Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 200.1
bearbeitet von Holger Engels
am 2025/01/11 10:22
am 2025/01/11 10:22
Änderungskommentar:
Neues Bild Arithmagon Potenzfunktionen Formen.svg hochladen
Auf Version 162.1
bearbeitet von Martin Rathgeb
am 2025/01/07 01:11
am 2025/01/07 01:11
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 0 hinzugefügt, 1 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.martinrathgeb - Inhalt
-
... ... @@ -1,9 +1,13 @@ 1 1 {{seiteninhalt/}} 2 2 3 -{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4 , K5" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}}3 +{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}} 4 4 (% class="abc" %) 5 5 1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken. 6 -[[image:Arithmagon Potenzfunktionen Formen.svg||width="500"]] 6 +(% class="border slim" %) 7 +| |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} | 8 +|{{formula}}y=\square \cdot (x-1)\cdot (x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KooSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}} 9 +| |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} | 10 + 7 7 ))) 8 8 1. (((Nenne die Werte der charakteristischen Größen der Parabel: 9 9 1. (((//Lage//. ... ... @@ -18,43 +18,72 @@ 18 18 ))) 19 19 {{/aufgabe}} 20 20 21 -{{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K1, K5, K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}} 22 -(((In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3. 23 -(% class="border" %) 24 -|Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}} 25 +{{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}} 26 +In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3. 27 +(% class="border slim" %) 25 25 |Hauptform |{{formula}}y=ax^2+bx+c{{/formula}} 29 +|Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}} 26 26 |Produktform |{{formula}}y=a(x-x_1)(x-x_2){{/formula}} 27 27 |Gestreckte Normalform |{{formula}}}y=a(x^2+px+q){{/formula}} 32 + 33 +Die Normalparabel ist Funktionsgraph //der// quadratischen Potenzfunktion. Transformationen (vgl. Merkhilfe, S. 4) der Normalparabel liefern Funktionsgraphen mit Parabelgleichung in Scheitelform. Ausmultiplizieren liefert die zugehörige Hauptform, das ist zumeist eine //Linearkombination// der drei Potenzfunktionen vom Grad {{formula}}\le 2{{/formula}}: die konstante Funktion mit {{formula}}y=1{{/formula}} (die Potenzfunktion vom Grad 0), proportionale Funktion mit {{formula}}y=x{{/formula}} (die Potenzfunktion vom Grad 1) und quadratische Funktion mit {{formula}}y=x^2{{/formula}} (die Potenzfunktion vom Grad 2). Der Darstellungswechsel zur Produktform ist schwieriger, aber auf verschiedene Weisen zugänglich. Wir folgen hier dem Darstellungswechsel nach //Po-Shen Loh//. 34 + 35 +//Verfahren statt Formel (Teil 1)//. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 36 +(% class="border slim" %) 37 +|[[image:Po-ShenLoh_Quadratic.png||width="600px"]] 38 + 39 +//Verfahren statt Formel (Teil 2)//. In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor. 40 +(% class="border slim" %) 41 +|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] | [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}} 42 + 43 +//Anmerkung//. Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln. 44 + 45 +(% class="abc" %) 46 +1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) aus der gegebenen Hauptform die //Produktform//. 47 +1. {{formula}}y=x^2-7x+12{{/formula}} 48 +1. {{formula}}y=x^2-14x+22{{/formula}} 49 +1. {{formula}}y=x^2-7x+12{{/formula}} 50 +1. {{formula}}y=x^2-8x+13{{/formula}} 51 +1. {{formula}}y=x^2+6x-4{{/formula}} 52 +1. {{formula}}y=2x^2-4x-5 {{/formula}} 53 + 28 28 ))) 55 +1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert. 56 +//Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet. 57 +1. (((Begründe, dass gilt: 58 +i. {{formula}}x_S=\frac{p}{2}{{/formula}} 59 +ii. {{formula}}x_S=\frac{b}{2a}{{/formula}} 60 +iii. {{formula}}x_S=\frac{x_1+x_2}{2}{{/formula}} 61 +iv. {{formula}}y_S=f(x_S){{/formula}} 62 +))) 63 +1. Ermittle zu den in a) gegebenen Hauptformen der Parabelgleichungen die Scheitelformen. 64 +{{/aufgabe}} 65 + 66 +{{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}} 67 +IN PROGRESS 68 +In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3. 69 +(% class="border slim" %) 70 +|Hauptform |{{formula}}y=ax^2+bx+c{{/formula}} 71 +|Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}} 72 +|Produktform |{{formula}}y=a(x-x_1)(x-x_2){{/formula}} 73 +|Gestreckte Normalform |{{formula}}}y=a(x^2+px+q){{/formula}} 74 + 29 29 (% class="abc" %) 30 -1. //Formen untersuchen//. Bestimme für jede Gleichungsform, welche charakteristischen Größen der Parabel sich direkt ablesen lassen; siehe hierzu das vorausgegangene Arithmagon. 31 -1. //Formeln entdecken//. Untersuche die Gleichungsformen im Hinblick auf Zusammenhänge; instruktiv ist der //Koeffizientenvergleich// mit der "Gestreckten Normalform". 32 -1. (((//Formeln untersuchen//. Folgende Tabelle gibt einen Überblick über Beziehungen zwischen den Parametern, wobei die Kurz-Bezeichnung {{formula}}}y_S^*=\frac{y_S}{a}{{/formula}} verwendet wurde. Welche Zusammenhänge zwischen den tabellierten Beziehungen lassen sich schnell erkennen? 33 -(% class="border" %) 34 -|Nr. |Von |Zu |Parameter 1 |Parameter 2 35 -|1 |Scheitelform |pq-Form |{{formula}}p = -2x_S{{/formula}} |{{formula}}q = x_S^2 + y_S^*{{/formula}} 36 -|2 |pq-Form |Scheitelform |{{formula}}x_S = -\frac{p}{2}{{/formula}} |{{formula}}y_S^* = -\frac{p^2}{4} + q{{/formula}} 37 -|3 |Scheitelform |Produktform |{{formula}}x_1 = x_S - \sqrt{-y_S^*}{{/formula}} |{{formula}}x_2 = x_S + \sqrt{-y_S^*}{{/formula}} 38 -|4 |pq-Form |Produktform |{{formula}}x_1 = -\frac{p}{2} + \sqrt{\frac{p^2}{4} - q}{{/formula}} |{{formula}}x_2 = -\frac{p}{2} - \sqrt{\frac{p^2}{4} - q}{{/formula}} 39 -|5 |Produktform |pq-Form |{{formula}}p = -(x_1 + x_2){{/formula}} |{{formula}}q = x_1 x_2{{/formula}} 40 -|6 |Produktform |Scheitelform |{{formula}}x_S = \frac{x_1 + x_2}{2}{{/formula}} |{{formula}}y_S^* = -\frac{(x_2 - x_1)^2}{4}{{/formula}} 76 +1. (((Ermittle für jede Gleichungsform {{formula}}\ldots{{/formula}} 77 +1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die beiden //Winkelhalbierenden// (besondere Geraden) darstellen lassen. 78 +1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die //Parallelen zu den Koordinatenachsen// (Typen besonderer Geraden) darstellen lassen. 79 +1. {{formula}}\ldots{{/formula}}, welche Werte charakteristischer Größen von {{formula}}g{{/formula}} sich direkt ablesen lassen; vgl. dazu vorausgegangenes Arithmagon. 80 + 41 41 ))) 42 -1. (((//Formeln anwenden//. Ergänze die Leerstellen in folgender Tabelle. 43 -(% class="border" %) 44 -|Nr. |Hauptform |Scheitelform |Produktform 45 -|1 |{{formula}}y = x^2 - 4x + 3{{/formula}} | | 46 -|2 | |{{formula}}y = (x - 1)^2 + 4{{/formula}} | 47 -|3 | | |{{formula}}y = (x + 2)(x + 2){{/formula}} 48 -|4 |{{formula}}y = -(x^2 - 4x + 1){{/formula}} | | 49 -|5 | |{{formula}}y = -\pi(x - \pi)^2{{/formula}} | 50 -|6 | | |{{formula}}y = -(x + 1 - \sqrt{2})(x + 1 + \sqrt{2}){{/formula}} 51 -|7 |{{formula}}y = 2(x^2 + 2x + 5){{/formula}} | | 52 -|8 | |{{formula}}y = -\frac{3}{2}(x - 2)^2{{/formula}} | 53 -|9 | | |{{formula}}y = \sqrt{2}(x - 2)(x - 3){{/formula}} 82 +1. (((Erläutere, inwiefern {{formula}}\ldots{{/formula}} 83 +1. {{formula}}\ldots{{/formula}} die //Hauptform// und die //Produktform// zwei Spezialfälle der //Punkt-Steigungs-Form// sind. 84 +1. {{formula}}\ldots{{/formula}} nur die //Allgemeine Form// diese Bezeichnung mit Recht trägt; vgl. dazu a). 85 + 54 54 ))) 55 -1. //Formelnbegründen//.Zeigeeinigeder oben tabelliertenBeziehungenzwischen denParametern.87 +1. Berechne aus den Parametern {{formula}}x_0, y_0{{/formula}} der Achsenabschnittsform die Steigung {{formula}}m{{/formula}}. 56 56 {{/aufgabe}} 57 57 90 + 58 58 {{aufgabe id="Weg zur Schule" afb="I" kompetenzen="K1,K3,K4" quelle="Ute Jutt, Ronja Franke" cc="BY-SA" zeit="20"}} 59 59 Kay möchte die Laufzeit für den Weg vom Bahnhof zur Schule berechnen. Die Laufzeit wird modelliert durch die Funktion {{formula}}t{{/formula}} mit {{formula}}t(v)= \frac{d}{v}{{/formula}} (Geschwindigkeit {{formula}}v{{/formula}} in km/min; Entfernung {{formula}}d{{/formula}} in km; Laufzeit {{formula}}t(v){{/formula}} in min). Eine Messung hat ergeben, dass die Schule vom Bahnhof 5 km entfernt liegt. 60 60
- Arithmagon Potenzfunktionen Formen.svg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -300.3 KB - Inhalt