Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 48.1
bearbeitet von Martin Stern
am 2024/10/15 10:20
am 2024/10/15 10:20
Änderungskommentar:
Anhang verschoben nach xwiki:Eingangsklasse.BPE_2.Lösung Gleichungen grafisch lösen.WebHome.
Auf Version 49.3
bearbeitet von Holger Engels
am 2024/10/15 12:26
am 2024/10/15 12:26
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. martinstern1 +XWiki.holgerengels - Inhalt
-
... ... @@ -18,23 +18,10 @@ 18 18 {{/aufgabe}} 19 19 20 20 {{aufgabe id="Gleichungen grafisch lösen" afb="II" zeit="15" kompetenzen="" tags="problemlösen" quelle="Martin Stern, Niklas Wunder" cc="BY-SA"}} 21 -a) Zeichne die Funktionsgraphen zu den Funktionsgleichungen 22 - 23 - {{formula}} 24 - f(x)=\sqrt{-x+1} 25 - {{/formula}} und {{formula}} g(x)=-\sqrt{x+5}+3 {{/formula}} möglichst genau in ein gemeinsammes Koordinatensystem im Bereich zwischen -6 und +2. 26 - 27 -b) Beschreibe wie man mit der Zeichnung aus der a) die Wurzelgleichung 28 - {{formula}} 29 - \sqrt{-x+1} = -\sqrt{x+5}+3 30 - {{/formula}} 31 -näherungsweise Lösen kann ohne weitere Rechnung. 32 - 33 -c) Löse die Wurzelgleichung 34 - {{formula}} 35 - \sqrt{-x+1} = -\sqrt{x+5}+3 36 - {{/formula}} 37 -rechnerisch und vergleiche deine Lösungen mit der b). 21 +(% style="list-style: alphastyle" %) 22 +1. Zeichne die Funktionsgraphen zu den Funktionsgleichungen {{formula}}f(x)=\sqrt{-x+1}{{/formula}} und {{formula}} g(x)=-\sqrt{x+5}+3 {{/formula}} möglichst genau in ein gemeinsammes Koordinatensystem im Bereich zwischen -6 und +2. 23 +1. Beschreibe wie man mit der Zeichnung aus der a) die Wurzelgleichung {{formula}}\sqrt{-x+1} = -\sqrt{x+5}+3{{/formula}} näherungsweise Lösen kann ohne weitere Rechnung. 24 +1. Löse die Wurzelgleichung {{formula}}\sqrt{-x+1} = -\sqrt{x+5}+3{{/formula}} rechnerisch und vergleiche deine Lösungen mit der b). 38 38 {{/aufgabe}} 39 39 40 40 {{aufgabe id="Lineare Regression" afb="II" zeit="15" kompetenzen="" quelle="Universität Köln Dr.C.Lange" cc="BY-SA"}} ... ... @@ -52,15 +52,13 @@ 52 52 {{/aufgabe}} 53 53 54 54 {{aufgabe id="Weg zur Schule" afb="III" kompetenzen="K1,K3,K4" quelle="Ute Jutt, Ronja Franke" cc="BY-SA" zeit="20"}} 55 -Stell dir vor, du möchtest die Zeit berechnen, die du benötigst, um zur Schule zu laufen. 56 -Die Funktion {{formula}}T(x){{/formula}} gibt die benötigte Zeit in Minuten an, abhängig von der Geschwindigkeit {{formula}}x{{/formula}} in km/min. 57 -Die Funktion könnte wie folgt definiert sein: {{formula}}T(x)= \frac{d}{x}{{/formula}}, wobei {{formula}}d{{/formula}} die Entfernung zur Schule in Kilometern ist. 42 +Stell dir vor, du möchtest die Zeit berechnen, die du benötigst, um zur Schule zu laufen. Die Funktion {{formula}}t{{/formula}} gibt die benötigte Zeit in Minuten an, abhängig von der Geschwindigkeit {{formula}}x{{/formula}} in km/min. Die Funktion könnte wie folgt definiert sein: {{formula}}t(x)= \frac{d}{x}{{/formula}}, wobei {{formula}}d{{/formula}} die Entfernung zur Schule in Kilometern ist. 58 58 Nehmen wir an, du wohnst 5 km zur Schule entfernt. 59 59 60 -1. Erstelle die Funktion {{formula}} T(x){{/formula}}, die die benötigte Zeit in Minuten in Abhängigkeit von der Geschwindigkeit {{formula}}x{{/formula}} in km/h beschreibt.61 -1. Bestimme die Definitionslücke der Funktion {{formula}} T(x){{/formula}}.45 +1. Erstelle die Funktion {{formula}}t{{/formula}}, die die benötigte Zeit in Minuten in Abhängigkeit von der Geschwindigkeit {{formula}}x{{/formula}} in km/h beschreibt. 46 +1. Bestimme die Definitionslücke der Funktion {{formula}}t{{/formula}}. 62 62 1. Erläutere, warum es in diesem Kontext sinnvoll ist, eine Definitionslücke zu haben. 63 -1. Zeichne den Graphen der Funktion {{formula}} T(x){{/formula}} und markiere die Definitionslücke.48 +1. Zeichne den Graphen der Funktion {{formula}}t{{/formula}} und markiere die Definitionslücke. 64 64 {{/aufgabe}} 65 65 66 66