Änderungen von Dokument BPE 2 Einheitsübergreifend
                  Zuletzt geändert von Holger Engels am 2025/08/11 10:29
              
      
      Von Version  89.1 
    
    
              bearbeitet von Martin Rathgeb
        
am 2024/12/22 23:58
     am 2024/12/22 23:58
      Änderungskommentar:
              Es gibt keinen Kommentar für diese Version
          
         
      Auf Version  88.1 
    
    
              bearbeitet von Martin Rathgeb
        
am 2024/12/22 23:56
     am 2024/12/22 23:56
      Änderungskommentar:
              Es gibt keinen Kommentar für diese Version
          
         Zusammenfassung
- 
          Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
- 
      - Inhalt
-   ... ... @@ -62,7 +62,7 @@ 62 62 63 63 64 64 {{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder, Martin Rathgeb" zeit="12" cc="BY-SA"}} 65 -Graphische Transformationen gehören zu den Grundwerkzeugen der Mathematik. Neben Verschiebungen, Streckungen und Spiegelungen an den Achsen gibt es eine besondere Transformation, die in ihrer Bedeutung oft übersehen wird: die Spiegelung an der ersten Winkelhalbierenden, d.h., an der Geraden mit Gleichung {{formula}}y=x{{/formula}}. Diese Transformation ist weit mehr als eine Spielerei, denn sie führt aufdie Umkehrungder Funktion.65 +Graphische Transformationen gehören zu den Grundwerkzeugen der Mathematik. Neben Verschiebungen, Streckungen und Spiegelungen an den Achsen gibt es eine besondere Transformation, die in ihrer Bedeutung oft übersehen wird: die Spiegelung an der ersten Winkelhalbierenden, d.h., an der Geraden mit Gleichung {{formula}}y=x{{/formula}}. Diese Transformation ist weit mehr als eine Spielerei, denn sie führt direkt zur Bestimmung der Umkehrfunktion einer gegebenen Funktion. 66 66 67 67 Betrachten wir dafür zunächst ein Beispiel. Für alle Funktionen schränkt man den Definitionsbereich auf {{formula}}x> 0{{/formula}} ein. Wieso dies sinnvoll ist wird später klar. Um die Funktionsgleichung nach Spiegelung rechnerisch zu ermitteln nimmt man die Funktionsgleichung, z.B. {{formula}} y=x^2{{/formula}}, löst diese nach x auf und vertauscht anschließend die Variablen so erhält man den gespiegelten Funktionsgraphen mit passender Funktionsgleichung. 68 68 
 
 
  