Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 120.1
bearbeitet von Martin Rathgeb
am 2024/10/14 21:38
am 2024/10/14 21:38
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 122.1
bearbeitet von Martin Rathgeb
am 2024/10/14 21:42
am 2024/10/14 21:42
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -29,13 +29,13 @@ 29 29 ((( 30 30 1.1 Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}}) 31 31 (% class="border" %) 32 -|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+10{{/formula}}| {{formula}}+100{{/formula}}| {{formula}}+10^3{{/formula}}| {{formula}}+10^6{{/formula}}| {{formula}}+10^9{{/formula}} 33 -|={{formula}}f(x){{/formula}}|||||| 32 +|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+10{{/formula}}| {{formula}}+100{{/formula}}| {{formula}}+10^3{{/formula}}| {{formula}}+10^6{{/formula}}| {{formula}}+10^9{{/formula}}| {{formula}}+10^{12}{{/formula}} 33 +|={{formula}}f(x){{/formula}}||||||| 34 34 35 35 1.1 Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}}) 36 36 (% class="border" %) 37 -|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-10 ^3{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}38 -|={{formula}}f(x){{/formula}}|||||| 37 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}|{{formula}}-10^{12}{{/formula}} 38 +|={{formula}}f(x){{/formula}}||||||| 39 39 ))) 40 40 41 41 1. Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}}) ... ... @@ -42,12 +42,12 @@ 42 42 ((( 43 43 1.1 Randverhalten: Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) 44 44 (% class="border" %) 45 -|={{formula}}x{{/formula}}| {{formula}} \pm1{{/formula}}| {{formula}}\pm0,1{{/formula}}| {{formula}}\pm0,01{{/formula}}| {{formula}}\pm0,001{{/formula}}| {{formula}}\pm0,0001{{/formula}}45 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-0,1{{/formula}}| {{formula}}-0,01{{/formula}}| {{formula}}-0,001{{/formula}}| {{formula}}-0,0001{{/formula}} 46 46 |={{formula}}f(x){{/formula}}||||| 47 47 48 48 1.1 Randverhalten: Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) 49 49 (% class="border" %) 50 -|={{formula}}x{{/formula}}| {{formula}} \pm1{{/formula}}| {{formula}}\pm0,1{{/formula}}| {{formula}}\pm0,01{{/formula}}| {{formula}}\pm0,001{{/formula}}| {{formula}}\pm0,0001{{/formula}}50 +|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+0,1{{/formula}}| {{formula}}+0,01{{/formula}}| {{formula}}+0,001{{/formula}}| {{formula}}+0,0001{{/formula}} 51 51 |={{formula}}f(x){{/formula}}||||| 52 52 ))) 53 53 {{/aufgabe}}