Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 125.1
bearbeitet von Martin Rathgeb
am 2024/10/14 21:45
am 2024/10/14 21:45
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 144.1
bearbeitet von Martin Rathgeb
am 2024/10/14 22:16
am 2024/10/14 22:16
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -13,41 +13,45 @@ 13 13 14 14 15 15 {{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 16 -Ergänze nachfolgende Wertetabelle zu folgenden Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}} und {{formula}}g(x)=x^{1/2}{{/formula}}. Erkennst du eine Symmetrie? 17 - 18 -(% class="border" %) 19 -|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}} 20 -|={{formula}}f(x){{/formula}}||||||||||||||||||||||| 21 -|={{formula}}g(x){{/formula}}||||||||||||||||||||||| 16 +(% style="list-style: alphastyle" %) 17 +1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle. 18 +((((% class="border" %) 19 +|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10||||||||| 20 +|={{formula}}f(x){{/formula}}||||||||||||400|900|1600|2500|3600|4900|6400|8100|10000 21 +))) 22 +1. Ergänze für die Funktionsgleichung {{formula}}g(x)=x^{1/2}{{/formula}} folgende Wertetabelle. 23 +((((% class="border" %) 24 +|={{formula}}x{{/formula}}|0|1|4|9|16|25|36|49|64|81|100||||||||| 25 +|={{formula}}g(x){{/formula}}||||||||||||20|30|40|50|60|70|80|90|100 26 +))) 27 +1. Erkennst du eine Symmetrie? 22 22 {{/aufgabe}} 23 23 24 24 {{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 25 -Gegeben ist die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und maximalemDefinitionsbereich. Untersuche ihr Randverhaltenanhand folgenderWertetabellen. Erkennst du eine Symmetrie?31 +Gegeben ist die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}}. Untersuche die Funktion im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür folgende Wertetabellen. Erkennst du eine Symmetrie? 26 26 27 27 (% style="list-style: alphastyle" %) 28 28 1. Randverhalten: Verhalten im Unendlichen 29 -((( 30 30 1.1 Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}}) 31 -(% class="border" %) 36 +((((% class="border" %) 32 32 |={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+10{{/formula}}| {{formula}}+100{{/formula}}| {{formula}}+1000{{/formula}}| {{formula}}+10^6{{/formula}}| {{formula}}+10^9{{/formula}}| {{formula}}+10^{12}{{/formula}} 33 33 |={{formula}}f(x){{/formula}}||||||| 34 - 39 +))) 35 35 1.1 Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}}) 36 -(% class="border" %) 41 +((((% class="border" %) 37 37 |={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}|{{formula}}-10^{12}{{/formula}} 38 38 |={{formula}}f(x){{/formula}}||||||| 39 39 ))) 40 40 41 41 1. Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}}) 42 -((( 43 43 1.1 Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) 44 -(% class="border" %) 48 +((((% class="border" %) 45 45 |={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-0,1{{/formula}}| {{formula}}-0,01{{/formula}}| {{formula}}-0,001{{/formula}}| {{formula}}-10^{-6}{{/formula}}| {{formula}}-10^{-9}{{/formula}}| {{formula}}-10^{-12}{{/formula}} 46 46 |={{formula}}f(x){{/formula}}||||||| 47 - 51 +))) 48 48 1.1 Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) 49 -(% class="border" %) 50 -|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+0,1{{/formula}}| {{formula}}+0,01{{/formula}}| {{formula}}+0,001{{/formula}}| {{formula}}+10^{ +6}{{/formula}}| {{formula}}+10^{+9}{{/formula}}| {{formula}}+10^{+12}{{/formula}}53 +((((% class="border" %) 54 +|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+0,1{{/formula}}| {{formula}}+0,01{{/formula}}| {{formula}}+0,001{{/formula}}| {{formula}}+10^{-6}{{/formula}}| {{formula}}+10^{-9}{{/formula}}| {{formula}}+10^{-12}{{/formula}} 51 51 |={{formula}}f(x){{/formula}}||||||| 52 52 ))) 53 53 {{/aufgabe}}