Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 137.1
bearbeitet von Martin Rathgeb
am 2024/10/14 22:09
am 2024/10/14 22:09
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 106.1
bearbeitet von Martin Rathgeb
am 2024/10/14 21:16
am 2024/10/14 21:16
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -11,49 +11,46 @@ 11 11 Symmetrie 12 12 Stetigkeit 13 13 14 - 15 15 {{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 +Ergänze nachfolgende Wertetabelle zu folgender Funktionsgleichung {{formula}}f(x)=\frac{1}{x}{{/formula}}. Erkennst du eine Symmetrie? 16 + 16 16 (% style="list-style: alphastyle" %) 17 -1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle. 18 -((((% class="border" %) 19 -|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10||| 20 -|={{formula}}f(x){{/formula}}||||||||||||400|900|1600|2500|||||||| 18 +1. Randverhalten: Globalverhalten - Verhalten im Unendlichen 19 + 20 +(% style="list-style: alphastyle" %) 21 +(((1.1 Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}}) 22 +(% class="border" %) 23 +|={{formula}}x{{/formula}}| {{formula}}1{{/formula}}| {{formula}}10{{/formula}}| {{formula}}100{{/formula}}| {{formula}}1000{{/formula}}| {{formula}}10000{{/formula}} 24 +|={{formula}}f(x){{/formula}}||||| 21 21 ))) 22 -1. ErgänzefürdieFunktionsgleichung{{formula}}g(x)=x^{1/2}{{/formula}}folgende Wertetabelle.23 -( (((% class="border" %)24 -|={{formula}}x{{/formula}}| 0|1|2| 3| 4| 5| 6| 7| 8| 9|10|16| 25| 36| 49| 64| 81| 100| 400| 900|{{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}}25 -|={{formula}} g(x){{/formula}}|||||||||||||||||||||||26 +(((1.1 Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}}) 27 +(% class="border" %) 28 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10000{{/formula}} 29 +|={{formula}}f(x){{/formula}}||||| 26 26 ))) 27 -1. Erkennst du eine Symmetrie? 31 +1. Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}}) 32 + 33 +(% style="list-style: alphastyle" %) 34 +1. Randverhalten: Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) 35 +(% class="border" %) 36 +|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}} 37 +|={{formula}}f(x){{/formula}}||||| 38 + 39 +1. Randverhalten: Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) 40 +(% class="border" %) 41 +|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}} 42 +|={{formula}}f(x){{/formula}}||||| 43 + 44 + 28 28 {{/aufgabe}} 29 29 30 30 {{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 31 - Gegebenist die Funktion//f// mit{{formula}}f(x)=\frac{1}{x}{{/formula}} undDefinitionsbereich{{formula}}\mathbb{R}^*{{/formula}}.Untersuche die Funktion im Hinblick auf ihr Randverhalten und ihre Wertemenge.Ergänze dafür folgende Wertetabellen. Erkennst du eine Symmetrie?48 +Ergänze nachfolgende Wertetabelle zu folgenden Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}} und {{formula}}g(x)=x^{1/2}{{/formula}}. Erkennst du eine Symmetrie? 32 32 33 -(% style="list-style: alphastyle" %) 34 -1. Randverhalten: Verhalten im Unendlichen 35 -1.1 Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}}) 36 -((((% class="border" %) 37 -|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+10{{/formula}}| {{formula}}+100{{/formula}}| {{formula}}+1000{{/formula}}| {{formula}}+10^6{{/formula}}| {{formula}}+10^9{{/formula}}| {{formula}}+10^{12}{{/formula}} 38 -|={{formula}}f(x){{/formula}}||||||| 39 -))) 40 -1.1 Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}}) 41 -((((% class="border" %) 42 -|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}|{{formula}}-10^{12}{{/formula}} 43 -|={{formula}}f(x){{/formula}}||||||| 44 -))) 45 - 46 -1. Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}}) 47 -1.1 Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) 48 -((((% class="border" %) 49 -|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-0,1{{/formula}}| {{formula}}-0,01{{/formula}}| {{formula}}-0,001{{/formula}}| {{formula}}-10^{-6}{{/formula}}| {{formula}}-10^{-9}{{/formula}}| {{formula}}-10^{-12}{{/formula}} 50 -|={{formula}}f(x){{/formula}}||||||| 51 -))) 52 -1.1 Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) 53 -((((% class="border" %) 54 -|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+0,1{{/formula}}| {{formula}}+0,01{{/formula}}| {{formula}}+0,001{{/formula}}| {{formula}}+10^{-6}{{/formula}}| {{formula}}+10^{-9}{{/formula}}| {{formula}}+10^{-12}{{/formula}} 55 -|={{formula}}f(x){{/formula}}||||||| 56 -))) 50 +(% class="border" %) 51 +|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}} 52 +|={{formula}}f(x){{/formula}}||||||||||||||||||||||| 53 +|={{formula}}g(x){{/formula}}||||||||||||||||||||||| 57 57 {{/aufgabe}} 58 58 59 59 {{aufgabe id="Erkunden - Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}