Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 170.1
bearbeitet von Holger Engels
am 2024/10/15 08:28
am 2024/10/15 08:28
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 179.1
bearbeitet von Martin Rathgeb
am 2024/10/15 10:04
am 2024/10/15 10:04
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.martinrathgeb - Inhalt
-
... ... @@ -14,12 +14,12 @@ 14 14 15 15 {{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 16 16 (% style="list-style: alphastyle" %) 17 -1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle ( soweitwiemöglich).17 +1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle (wo möglich). 18 18 ((((% class="border" style="width:100%" %) 19 19 |={{formula}}x{{/formula}}|-1|| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10||||||||| 20 20 |={{formula}}f(x){{/formula}}||-1||||||||||||400|900|1600|2500|3600|4900|6400|8100|10000 21 21 ))) 22 -1. Ergänze für die Funktionsgleichung {{formula}}g(x)=x^{1/2}{{/formula}} folgende Wertetabelle ( soweitwiemöglich).22 +1. Ergänze für die Funktionsgleichung {{formula}}g(x)=x^{1/2}{{/formula}} folgende Wertetabelle (wo möglich). 23 23 ((((% class="border" style="width:100%" %) 24 24 |={{formula}}x{{/formula}}|-1||0|1|4|9|16|25|36|49|64|81|100||||||||| 25 25 |={{formula}}g(x){{/formula}}||-1||||||||||||20|30|40|50|60|70|80|90|100 ... ... @@ -27,13 +27,13 @@ 27 27 1. Erkennst du eine Symmetrie? 28 28 1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Bestimme 29 29 ((( 30 -1 .1{{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und31 - 1.1{{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.30 +1) {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und 31 +2) {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 32 32 ))) 33 33 1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche 34 34 ((( 35 -1 .1{{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und36 - 1.1{{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.35 +1) {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und 36 +2) {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 37 37 ))) 38 38 {{/aufgabe}} 39 39 ... ... @@ -72,6 +72,19 @@ 72 72 Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 73 73 {{/aufgabe}} 74 74 75 +{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 76 +Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}}. 77 +(% style="list-style: alphastyle" %) 78 +1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an. 79 +1. Skizziere jeweils den Graphen der Funktion ggf. mit Asymptoten; benutze dafür ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. 80 +1. Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 81 + 82 +{{lehrende}} 83 +Diese zweite Version soll lediglich ein anderes Layout vorschlagen/vorstellen. 84 +Die bessere Version kann/soll dann auch in der folgenden Aufgabe umgesetzt werden. 85 +{{/lehrende}} 86 +{{/aufgabe}} 87 + 75 75 {{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 76 76 Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 77 77 {{/aufgabe}} ... ... @@ -117,12 +117,12 @@ 117 117 {{aufgabe id="Stetigkeitsbetrachtungen" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}} 118 118 Beurteile für jedes Schaubild, ob der Graph zu einer (zusammengesetzten) Funktion gehören kann und ob diese im dargestellten Bereich stetig ist! 119 119 [[image:Stetigkeit ee.svg||style="margin: 8px"]] [[image:Stetigkeit ie.svg||style="margin: 8px"]] [[image:Stetigkeit ei.svg||style="margin: 8px"]] [[image:Stetigkeit ii.svg||style="margin: 8px"]] 120 -[[image:Stetigkeit lee.svg||style="margin: 8px"]] [[image:Stetigkeit lie.svg||style="margin: 8px"]] [[image:Stetigkeit lei.svg||style="margin: 8px"]] [[image:Stetigkeit lii.svg||style="margin: 8px"]] [[image:Stetigkeito.svg||style="margin: 8px"]] (% style="display: inline-block" %)(((Hinweis:133 +[[image:Stetigkeit lee.svg||style="margin: 8px"]] [[image:Stetigkeit o.svg||style="margin: 8px"]] (% style="display: inline-block" %) Hinweis: 121 121 ⬤ schließt den Punkt ein 122 -⭘ schließt ihn aus )))135 +⭘ schließt ihn aus 123 123 {{/aufgabe}} 124 124 125 -{{aufgabe id="Umkehrung" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}} 138 +{{aufgabe id="Umkehrung" afb="III" kompetenzen="K1, K2, K5" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}} 126 126 Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x^2}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. Nimm dazu Stellung! 127 127 {{/aufgabe}} 128 128