Zuletzt geändert von Holger Engels am 2025/03/31 21:42

Von Version 181.1
bearbeitet von Martin Rathgeb
am 2024/10/15 10:23
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 170.1
bearbeitet von Holger Engels
am 2024/10/15 08:28
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.martinrathgeb
1 +XWiki.holgerengels
Inhalt
... ... @@ -14,12 +14,12 @@
14 14  
15 15  {{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
16 16  (% style="list-style: alphastyle" %)
17 -1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle (wo möglich).
17 +1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle (soweit wie möglich).
18 18  ((((% class="border" style="width:100%" %)
19 19  |={{formula}}x{{/formula}}|-1|| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10|||||||||
20 20  |={{formula}}f(x){{/formula}}||-1||||||||||||400|900|1600|2500|3600|4900|6400|8100|10000
21 21  )))
22 -1. Ergänze für die Funktionsgleichung {{formula}}g(x)=x^{1/2}{{/formula}} folgende Wertetabelle (wo möglich).
22 +1. Ergänze für die Funktionsgleichung {{formula}}g(x)=x^{1/2}{{/formula}} folgende Wertetabelle (soweit wie möglich).
23 23  ((((% class="border" style="width:100%" %)
24 24  |={{formula}}x{{/formula}}|-1||0|1|4|9|16|25|36|49|64|81|100|||||||||
25 25  |={{formula}}g(x){{/formula}}||-1||||||||||||20|30|40|50|60|70|80|90|100
... ... @@ -27,13 +27,13 @@
27 27  1. Erkennst du eine Symmetrie?
28 28  1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Bestimme
29 29  (((
30 -1) {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und
31 -2) {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.
30 +1.1 {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und
31 +1.1 {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.
32 32  )))
33 33  1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche
34 34  (((
35 -1) {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und
36 -2) {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.
35 +1.1 {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und
36 +1.1 {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.
37 37  )))
38 38  {{/aufgabe}}
39 39  
... ... @@ -70,19 +70,8 @@
70 70  
71 71  {{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
72 72  Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
73 -{{lehrende}}
74 -Diese Aufgabe folgt gleich noch in anderem Layout; das bessere Laout soll sich für diese und die (nach-)folgende Aufgabe durchsetzen.
75 -{{/lehrende}}
76 76  {{/aufgabe}}
77 77  
78 -{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
79 -Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}}.
80 -(% style="list-style: alphastyle" %)
81 -1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an.
82 -1. Skizziere jeweils den Graphen der Funktion ggf. mit Asymptoten; benutze dafür ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht.
83 -1. Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
84 -{{/aufgabe}}
85 -
86 86  {{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
87 87  Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
88 88  {{/aufgabe}}
... ... @@ -128,12 +128,12 @@
128 128  {{aufgabe id="Stetigkeitsbetrachtungen" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}}
129 129  Beurteile für jedes Schaubild, ob der Graph zu einer (zusammengesetzten) Funktion gehören kann und ob diese im dargestellten Bereich stetig ist!
130 130  [[image:Stetigkeit ee.svg||style="margin: 8px"]] [[image:Stetigkeit ie.svg||style="margin: 8px"]] [[image:Stetigkeit ei.svg||style="margin: 8px"]] [[image:Stetigkeit ii.svg||style="margin: 8px"]]
131 -[[image:Stetigkeit lee.svg||style="margin: 8px"]] [[image:Stetigkeit o.svg||style="margin: 8px"]] (% style="display: inline-block" %) Hinweis:
120 +[[image:Stetigkeit lee.svg||style="margin: 8px"]] [[image:Stetigkeit lie.svg||style="margin: 8px"]] [[image:Stetigkeit lei.svg||style="margin: 8px"]] [[image:Stetigkeit lii.svg||style="margin: 8px"]] [[image:Stetigkeit o.svg||style="margin: 8px"]] (% style="display: inline-block" %)(((Hinweis:
132 132  ⬤ schließt den Punkt ein
133 -⭘ schließt ihn aus
122 +⭘ schließt ihn aus)))
134 134  {{/aufgabe}}
135 135  
136 -{{aufgabe id="Umkehrung" afb="III" kompetenzen="K1, K2, K5" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5" niveau=p}}
125 +{{aufgabe id="Umkehrung" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}}
137 137  Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x^2}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. Nimm dazu Stellung!
138 138  {{/aufgabe}}
139 139