Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 191.2
bearbeitet von Holger Engels
am 2024/10/15 11:29
am 2024/10/15 11:29
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 191.6
bearbeitet von Holger Engels
am 2024/10/15 11:49
am 2024/10/15 11:49
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -11,8 +11,7 @@ 11 11 Symmetrie 12 12 Stetigkeit 13 13 14 - 15 -{{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 14 +{{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 16 16 (% style="list-style: alphastyle" %) 17 17 1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle (wo möglich). 18 18 ((((% class="border" style="width:100%" %) ... ... @@ -26,15 +26,9 @@ 26 26 ))) 27 27 1. Erkennst du eine Symmetrie? 28 28 1. Beschreibe das Randverhalten der Funktionen und nenne ihre Wertemengen. 29 - 30 -**Zusatzaufgaben** 31 -(% style="list-style: alphastyle" start="5" %) 32 -1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 33 -1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 34 -{{lehrende}}Bildhaft mit Kästchen und mapsto, Lücken, ...{{/lehrende}} 35 35 {{/aufgabe}} 36 36 37 -{{aufgabe id="Erkunden (eine Potenzfunktion) - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 30 +{{aufgabe id="Erkunden (eine Potenzfunktion) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 38 38 Untersuche die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}} im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür zunächst folgende Wertetabellen (wo möglich). 39 39 40 40 (% style="list-style: alphastyle" %) ... ... @@ -62,18 +62,9 @@ 62 62 ))) 63 63 1. Erkennst du eine Symmetrie? 64 64 1. Beschreibe das Randverhalten der Funktion und nenne ihre Wertemenge. 65 -1. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=g(x){{/formula}} und {{formula}}x\in \mathbb{R}^*{{/formula}}. 66 66 {{/aufgabe}} 67 67 68 68 {{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 69 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 70 - 71 -{{lehrende}} 72 -Diese Aufgabe folgt gleich noch in anderem Layout; das bessere Layout soll sich durchsetzen. 73 -{{/lehrende}} 74 -{{/aufgabe}} 75 - 76 -{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 77 77 Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}}. 78 78 (% style="list-style: alphastyle" %) 79 79 1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an. ... ... @@ -87,14 +87,12 @@ 87 87 1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an. 88 88 1. Skizziere jeweils die Graphen der Funktionen ggf. mit ihren Asymptoten; benutze dafür ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. 89 89 1. Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 90 - 91 -{{lehrende}} 92 -Diese Aufgabe folgt gleich noch in anderem Layout; das bessere soll sich durchsetzen. 93 -{{/lehrende}} 94 94 {{/aufgabe}} 95 95 96 -{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 97 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 76 +{{aufgabe id="Abbildungsketten" afb="II" kompetenzen="K4,K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 77 +(% style="list-style: alphastyle" start="5" %) 78 +1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 79 +1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 98 98 {{/aufgabe}} 99 99 100 100 {{aufgabe id="D und W" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}