Zuletzt geändert von Holger Engels am 2025/03/31 21:42

Von Version 193.2
bearbeitet von Holger Engels
am 2024/10/15 12:17
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 191.7
bearbeitet von Holger Engels
am 2024/10/15 12:06
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -5,6 +5,12 @@
5 5  [[Kompetenzen.K1]] [[Kompetenzen.K4]] Ich kann die Eigenschaften von Potenzfunktionen ausgehend von den Funktionsgraphen erläutern
6 6  [[Kompetenzen.K1]] Ich kann den Stetigkeitsbegriff anschaulich anhand der Graphen von Potenzfunktionen erläutern
7 7  
8 +Verhalten +/- oo
9 +Verhalten nahe Definitionslücke
10 +Asymptoten
11 +Symmetrie
12 +Stetigkeit
13 +
8 8  {{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
9 9  (% style="list-style: alphastyle" %)
10 10  1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle (wo möglich).
... ... @@ -51,7 +51,7 @@
51 51  1. Beschreibe das Randverhalten der Funktion und nenne ihre Wertemenge.
52 52  {{/aufgabe}}
53 53  
54 -{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="K4,K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
60 +{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
55 55  Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}}.
56 56  (% style="list-style: alphastyle" %)
57 57  1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an.
... ... @@ -59,7 +59,7 @@
59 59  1. Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
60 60  {{/aufgabe}}
61 61  
62 -{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="K4,K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
68 +{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
63 63  Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}}.
64 64  (% style="list-style: alphastyle" %)
65 65  1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an.
... ... @@ -67,7 +67,7 @@
67 67  1. Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
68 68  {{/aufgabe}}
69 69  
70 -{{aufgabe id="Abbildungsketten" afb="II" kompetenzen="K2,K4,K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
76 +{{aufgabe id="Abbildungsketten" afb="II" kompetenzen="K4,K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
71 71  (% style="list-style: alphastyle" start="5" %)
72 72  1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.
73 73  1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.
... ... @@ -82,7 +82,7 @@
82 82  {{/aufgabe}}
83 83  
84 84  {{aufgabe id="Symmetrie nachweisen" afb="I" kompetenzen="K1, K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
85 -Untersuche die folgenden Funktionen rechnerisch auf Symmetrie zum Ursprung und Symmetrie zur y-Achse.
91 +Untersuche die folgenden Funktionen auf Symmetrie zum Ursprung und Symmetrie zur y-Achse.
86 86  
87 87  (% style="list-style: alphastyle" %)
88 88  1. {{formula}}f(x)=\frac{5}{x}{{/formula}}
... ... @@ -108,11 +108,11 @@
108 108  **Zusatzaufgabe:** Finde möglichst einfache/ komplexe Lösungen.
109 109  {{/aufgabe}}
110 110  
111 -{{aufgabe id="Stetigkeit - Anschaulische Einführung" afb="II" kompetenzen="K1,K6" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}}
117 +{{aufgabe id="Stetigkeit - Anschaulische Einführung (Gegenlese)" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}}
112 112  Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x}{{/formula}} sei auf ihrem maximalen Definitionsbereich nicht stetig, weil man ihren Graphen nicht ohne Absetzen zeichnen kann. Nimm dazu Stellung!
113 113  {{/aufgabe}}
114 114  
115 -{{aufgabe id="Stetigkeitsbetrachtungen" afb="II" kompetenzen="K4,K6" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}}
121 +{{aufgabe id="Stetigkeitsbetrachtungen" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}}
116 116  Beurteile für jedes Schaubild, ob der Graph zu einer (zusammengesetzten) Funktion gehören kann und ob diese im dargestellten Bereich stetig ist!
117 117  [[image:Stetigkeit ee.svg||style="margin: 8px"]] [[image:Stetigkeit ie.svg||style="margin: 8px"]] [[image:Stetigkeit ei.svg||style="margin: 8px"]] [[image:Stetigkeit ii.svg||style="margin: 8px"]]
118 118  [[image:Stetigkeit lee.svg||style="margin: 8px"]] [[image:Stetigkeit o.svg||style="margin: 8px"]] (% style="display: inline-block" %) Hinweis:
... ... @@ -121,10 +121,6 @@
121 121  {{/aufgabe}}
122 122  
123 123  {{aufgabe id="Umkehrung" afb="III" kompetenzen="K1, K2, K5" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5" niveau=p}}
124 -Sascha formuliert die beiden nachfolgenden Behauptungen. Nimm dazu Stellung!
125 -(% style="list-style: alphastyle" %)
126 -1. Die Funktion //f// mit {{formula}}f(x) = \frac{1}{x}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion.
127 -1. Die Funktion //f// mit {{formula}}f(x) = \frac{1}{x^2}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion.
130 +Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x^2}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. Nimm dazu Stellung!
128 128  {{/aufgabe}}
129 129  
130 -{{seitenreflexion bildungsplan="5" kompetenzen="3" anforderungsbereiche="1" kriterien="2" menge="1"/}}