Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 62.1
bearbeitet von Martin Rathgeb
am 2024/10/14 15:53
am 2024/10/14 15:53
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 72.1
bearbeitet von Martin Rathgeb
am 2024/10/14 17:20
am 2024/10/14 17:20
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -12,13 +12,20 @@ 12 12 Stetigkeit 13 13 14 14 {{aufgabe id="Erkunden - Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. 16 -Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 15 +Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 16 + 17 +(% class="border" %) 18 +|=x|={{formula}}10^{0}{{/formula}}|={{formula}}10^{1}{{/formula}}|={{formula}}10^{1}{{/formula}}|={{formula}}10^{1}{{/formula}} 19 +|Normale Zelle| 20 + 17 17 {{/aufgabe}} 18 18 23 +{{aufgabe id="Erkunden - Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 24 +Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 25 +{{/aufgabe}} 26 + 19 19 {{aufgabe id="Erkunden - Ungerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 20 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. 21 -Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 28 +Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 22 22 {{/aufgabe}} 23 23 24 24 {{aufgabe id="D und W" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} ... ... @@ -30,11 +30,12 @@ 30 30 {{/aufgabe}} 31 31 32 32 {{aufgabe id="Eigenschaften" afb="I" kompetenzen="K1, K5" quelle="??" cc="BY-SA"}} 33 - Bestimmezu denuntengenanntenFunktionen (1) den maximalen Definitionsbereichmit (2) zugehörigemWertebereich, (3) den Globalverlauf,(4)dieSymmetrie und gegebenenfalls (5) waagerechte und senkrechte Asymptoten.40 +Gegeben ist die Funktionsgleichung {{formula}}f(x) = \frac{-3}{x-2}+4{{/formula}}. 34 34 35 35 (% style="list-style: alphastyle" %) 36 -1. Das Schaubild der Funktion g ist eine Parabel vierter Ordnung mit dem Scheitel {{formula}}S(-2| 3){{/formula}}, die um den Streckungsfaktor {{formula}}\frac{1}{2}{{/formula}} in y-Richtung gestreckt wurde. 37 -1. Die Funktion h ist eine transformierte Potenzfunktion mit {{formula}}h(x) = \frac{-3}{x-2}+4{{/formula}}. 43 +1. Gib für die Funktion //f// den maximalen Definitionsbereich mit zugehörigem Wertebereich und den Globalverlauf an. 44 +1. Nenne für den Graphen von //f// die waagerechte Asymptote und die senkrechte Asymptote. 45 +1. Zeige durch Rechnung, dass der Graph der Funktion weder symmetrisch zum Ursprung noch symmetrisch zur y-Achse ist. 38 38 {{/aufgabe}} 39 39 40 40 {{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}}