Zuletzt geändert von Holger Engels am 2025/01/19 11:04

Verstecke letzte Bearbeiter
Holger Engels 19.1 1 (% class=abc %)
2 1. (((Die Funktion {{formula}}f{{/formula}} hat den maximalen Definitionsbereich {{formula}}\bold{D}=\mathbb{R}{{/formula}} mit zugehörigem Wertebereich {{formula}}\bold{W}=\mathbb{R}{{/formula}} (roter Graph).
Holger Engels 18.1 3 Die Funktion {{formula}}g{{/formula}} hat den maximalen Definitionsbereich {{formula}}\bold{D}=\mathbb{R}{{/formula}} mit zugehörigem Wertebereich {{formula}}\bold{W}=\mathbb{R}{{/formula}} (blauer Graph).
Martin Rathgeb 11.1 4 Die Funktion {{formula}}h{{/formula}} hat den maximalen Definitionsbereich {{formula}}\bold{D}=\mathbb{R}\setminus\lbrace 0 \rbrace{{/formula}} mit zugehörigem Wertebereich {{formula}}\bold{W}=\mathbb{R}\setminus\lbrace 0 \rbrace{{/formula}} (grüner Graph).
Holger Engels 18.1 5 )))
Holger Engels 19.1 6 1. (((Die Graphen K,,f,, (rot) und K,,g,, (blau) haben keine Asymptoten; der Graph K,,h,, (grün) hingegen hat die x-Achse als waagrechte Asymptote und die y-Achse als senkrechte Asymptote.
Holger Engels 18.1 7 [[image:Graphen erkunden ungerade.svg|| width="450"]]
8 )))
Holger Engels 19.1 9 1. (((Man erkennt, dass die Graphen K,,f,, und K,,h,, punktsymmetrisch zum Koordinatenursprung sind (nur ungerade Hochzahlen im Funktionsterm).
Kim Fujan 1.1 10
Martin Rathgeb 13.1 11 Außerdem kann man sehen, dass der Graph K,,f,, im 1. Quadranten und der Graph K,,g,, spiegelsymmetrisch zur 1. Winkelhalbierenden (Gleichung {{formula}}y=x{{/formula}}) sind.
Holger Engels 18.1 12 )))
Martin Rathgeb 13.1 13 **Vorgriff Jahrgangsstufe 1:** Die Funktionen {{formula}}f{{/formula}} und {{formula}}g{{/formula}} sind Umkehrfunktionen zueinander.