Änderungen von Dokument BPE 2.2 Transformationen
Zuletzt geändert von Martin Rathgeb am 2025/02/23 18:53
Von Version 60.1
bearbeitet von Niklas Wunder
am 2024/10/14 14:47
am 2024/10/14 14:47
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 86.1
bearbeitet von Niklas Wunder
am 2024/12/17 14:14
am 2024/12/17 14:14
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -9,19 +9,19 @@ 9 9 {{formula}}f(x) = \frac{1}{x}{{/formula}} 10 10 {{formula}}f(x) = \sqrt{x}{{/formula}} 11 11 12 -{{aufgabe id="Terme bestimmen" afb="I" kompetenzen="K4" quelle="[[KMap>>https://kmap.eu/app/browser/Mathematik/Funktionen/Allgemeines]]" cc="BY-SA"}}13 -Die Funktionen f, g und h sind verschobene Potenzfunktionen mit den zugehörigen Schaubildern K,,f,,, K,,g,, und K,,h,,. Bestimme nSiedie jeweiligen Funktionsterme.12 +{{aufgabe id="Terme bestimmen" afb="I" kompetenzen="K4" zeit="6" quelle="" cc="BY-SA"}} 13 +Die Funktionen f, g und h sind verschobene Potenzfunktionen mit den zugehörigen Schaubildern K,,f,,, K,,g,, und K,,h,,. Bestimme die jeweiligen Funktionsterme. 14 14 15 15 [[image:Transformationen1.png||width="400px"]] 16 16 {{/aufgabe}} 17 17 18 -{{aufgabe id="Potenzfunktionen verschieben" afb="I" kompetenzen="K1,K4" quelle="Niklas Wunder" zeit="8" cc="BY-SA"}} 18 +{{aufgabe id="Potenzfunktionen verschieben" afb="II" kompetenzen="K1,K4" quelle="Niklas Wunder" zeit="8" cc="BY-SA"}} 19 19 Die Funktionen {{formula}}f, g{{/formula}} und {{formula}} h{{/formula}} sind verschobene Potenzfunktionen mit den zugehörigen Schaubildern K,,f,,, K,,g,, und K,,h,,. Beschreibe wie die verschobenen Potenzfunktionen aus den ursprünglichen Funktionen hervorgehen. 20 - 21 - 20 + 21 +[[image:Transformationen2.png||width="400px"]] 22 22 {{/aufgabe}} 23 23 24 -{{aufgabe id="Transformationen von Funktionsgraphen beschreiben" afb="I" kompetenzen="K1,K4" quelle="Martin Stern" zeit=" 12" cc="BY-SA"}}24 +{{aufgabe id="Transformationen von Funktionsgraphen beschreiben" afb="I" kompetenzen="K1,K4" quelle="Martin Stern" zeit="6" cc="BY-SA"}} 25 25 Beschreibe, wie die Schaubilder der nachfolgenden Funktionen jeweils aus dem Graphen {{formula}} y=x^k; k \in \mathbb{Q} {{/formula}} entstanden sind. 26 26 a) {{formula}}f(x)=6x^4-1{{/formula}} 27 27 b) {{formula}}f(x)=-\frac{1}{2}(x-5)^4-3{{/formula}} ... ... @@ -29,7 +29,7 @@ 29 29 d) {{formula}}f(x)=-4\,\sqrt[3]{x+1}+5{{/formula}} 30 30 {{/aufgabe}} 31 31 32 -{{aufgabe id="Funktionsterme nach Transformationen bestimmen" afb="I" kompetenzen="K4" quelle="Martin Stern" zeit=" 5" cc="BY-SA"}}32 +{{aufgabe id="Funktionsterme nach Transformationen bestimmen" afb="II" kompetenzen="K4" quelle="Martin Stern" zeit="8" cc="BY-SA"}} 33 33 Bestimme jeweils einen passenden Funktionsterm. 34 34 35 35 a) Der Graph von {{formula}}K_f{{/formula}} entsteht aus dem Graphen {{formula}}f(x)=\frac{1}{x}{{/formula}} durch Spiegelung an der x-Achse, Streckung mit dem Faktor 2 in y-Richtung sowie durch Verschiebung um 1 nach rechts und um 3 nach oben.\\ ... ... @@ -36,4 +36,33 @@ 36 36 b) Der Graph von {{formula}}K_f{{/formula}} entsteht aus dem Graphen {{formula}}f(x)=\frac{1}{x}{{/formula}} durch Verschiebung um 1 nach rechts und um 3 nach oben, Streckung mit dem Faktor 2 in y-Richtung sowie Spiegelung an der x-Achse.\\ 37 37 {{/aufgabe}} 38 38 39 -{{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""}} 39 +{{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder" zeit="12" cc="BY-SA"}} 40 +Neben der Spiegelung an der x- und y- Achse kann man auch an der ersten Winkelhalbierenden (gegeben durch y=x) einen Funktionsgraphen spiegeln. Für alle Funktionen schränkt man den Definitionsbereich auf {{formula}}x> 0{{/formula}} ein. Wieso dies sinnvoll ist wird später klar. Um die Funktionsgleichung nach Spiegelung rechnerisch zu ermitteln nimmt man die Funktionsgleichung, z.B. {{formula}} y=x^2{{/formula}}, löst diese nach x auf und vertauscht anschließend die Variablen so erhält man den gespiegelten Funktionsgraphen mit passender Funktionsgleichung. 41 + 42 +{{formula}} 43 +\begin{align*} 44 +y=x^2 \;\; | \,\sqrt{\phantomtext}\\ 45 +x=\sqrt{y}\;\; 46 +{{/formula}} 47 +Vertausche x und y miteinander um die Funktionsgleichung des gespiegelten Funktionsgraphens zu erhalten. 48 +{{formula}} 49 +y=\sqrt{x} 50 +\end{align*} 51 +{{/formula}} 52 + 53 +(% class="abc" %) 54 +1. Bestimme die an der ersten Winkelhabierenden gespiegelten Funktionen {{formula}} f(x)=\frac{1}{x}; g(x)= \frac{1}{x^2} {{/formula}} und {{formula}} h(x)= \frac{2\,x+3}{-4\,x-2}{{/formula}}. Hinweis: {{formula}}x >0{{/formula}} 55 +1. Bestimme graphisch den an der ersten Winkelhalbierenden gespiegelten Graphen zu den drei dargestellten Graphen. 56 +1. Die in a) berechneten Funktionen nennt man auch Umkehrfunktionen (Abkürzung {{formula}} f^{-1}{{/formula}} ) . Berechne den Funktionsterm {{formula}} f^{-1}(f(x)){{/formula}}. Beschreibe deine Beobachtung. Hinweis: Setze dazu den Term der Funktionsgleichung {{formula}}f(x){{/formula}} in die in a) berechnete Umkehrfunktion {{formula}} f^{-1}{{/formula}} ein und fasse zusammen. 57 +1.Begründe mit Hilfe deiner Lösungen von a) und b) wieso der Definitionsbereich der Funktion {{formula}} f 58 +{{/formula}} verkleinert werden muss, wenn man die Funktionsgleichung der Umkehrfunktion berechnet. 59 + 60 +[[image:Einheitsuebergreifend2.png||width="400px"]] 61 +{{/aufgabe}} 62 + 63 + 64 +{{lehrende}} 65 +Mit den ausgewählten Aufgaben sollten alle gefordeten Kompetenzen abgedeckt sein. Die Transformation wird nicht nur mit den drei im BP aufgeführten Funktionen, sondern mit allen möglichen Potenzfunktionen durchgeführt. 66 +{{/lehrende}} 67 + 68 +{{seitenreflexion bildungsplan="5" kompetenzen="2" anforderungsbereiche="2" kriterien="5" menge="4"}}
- Einheitsuebergreifend2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.niklaswunder - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +22.7 KB - Inhalt