Änderungen von Dokument BPE 2.2 Transformationen
Zuletzt geändert von Martin Rathgeb am 2025/02/23 18:53
Von Version 94.2
bearbeitet von Martin Rathgeb
am 2024/12/18 12:18
am 2024/12/18 12:18
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 82.2
bearbeitet von Holger Engels
am 2024/11/28 20:44
am 2024/11/28 20:44
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. martinrathgeb1 +XWiki.holgerengels - Inhalt
-
... ... @@ -23,21 +23,38 @@ 23 23 24 24 {{aufgabe id="Transformationen von Funktionsgraphen beschreiben" afb="I" kompetenzen="K1,K4" quelle="Martin Stern" zeit="6" cc="BY-SA"}} 25 25 Beschreibe, wie die Schaubilder der nachfolgenden Funktionen jeweils aus dem Graphen {{formula}} y=x^k; k \in \mathbb{Q} {{/formula}} entstanden sind. 26 -(% class="abc" %) 27 -1. {{formula}}f(x)=6x^4-1{{/formula}} 28 -1. {{formula}}f(x)=-\frac{1}{2}(x-5)^4-3{{/formula}} 29 -1. {{formula}} f(x)=\frac{1}{(x+3)^2}-8{{/formula}} 30 -1. {{formula}}f(x)=-4\,\sqrt[3]{x+1}+5{{/formula}} 26 +a) {{formula}}f(x)=6x^4-1{{/formula}} 27 +b) {{formula}}f(x)=-\frac{1}{2}(x-5)^4-3{{/formula}} 28 +c) {{formula}} f(x)=\frac{1}{(x+3)^2}-8{{/formula}} 29 +d) {{formula}}f(x)=-4\,\sqrt[3]{x+1}+5{{/formula}} 31 31 {{/aufgabe}} 32 32 33 33 {{aufgabe id="Funktionsterme nach Transformationen bestimmen" afb="II" kompetenzen="K4" quelle="Martin Stern" zeit="8" cc="BY-SA"}} 34 -Gegeben ist die Funktion {{formula}}f{{/formula}} mit {{formula}}f(x)=\frac{1}{x}{{/formula}}. Bestimme die Funktionsgleichung der Funktion {{formula}}g{{/formula}}. 33 +Bestimme jeweils einen passenden Funktionsterm. 34 + 35 +a) Der Graph von {{formula}}K_f{{/formula}} entsteht aus dem Graphen {{formula}}f(x)=\frac{1}{x}{{/formula}} durch Spiegelung an der x-Achse, Streckung mit dem Faktor 2 in y-Richtung sowie durch Verschiebung um 1 nach rechts und um 3 nach oben.\\ 36 +b) Der Graph von {{formula}}K_f{{/formula}} entsteht aus dem Graphen {{formula}}f(x)=\frac{1}{x}{{/formula}} durch Verschiebung um 1 nach rechts und um 3 nach oben, Streckung mit dem Faktor 2 in y-Richtung sowie Spiegelung an der x-Achse.\\ 37 +{{/aufgabe}} 38 + 39 +{{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder" zeit="12" cc="BY-SA"}} 40 +Neben der Spiegelung an der x- und y- Achse kann man auch an der ersten Winkelhalbierenden (gegeben durch y=x) eine Funktion spiegeln. Dazu nimmt man die Funktionsgleichung, z.B. {{formula}} y=x^2{{/formula}} mit {{formula}}x> 0{{/formula}}, löst diese nach x auf und vertauscht anschließend die Variablen so erhält man die gespiegelte Funktion. 41 + 42 +{{formula}} 43 +\begin{align*} 44 +y=x^2 \;\; | \,\sqrt{\phantomtext\\ 45 +x=\sqrt{y}\;\; |\, \text{ Tausche x und y aus}\\ 46 +y=\sqrt{x} 47 +\end{align*} 48 +{{/formula}} 49 + 35 35 (% class="abc" %) 36 -1. Der Graph von {{formula}}g{{/formula}} entsteht aus dem Graphen von {{formula}}f{{/formula}} durch Spiegelung an der x-Achse, Streckung mit dem Faktor 2 in y-Richtung, Verschiebung um 1 in x-Richtung und Verschiebung um 3 in y-Richtung. 37 -1. Der Graph von {{formula}}g{{/formula}} entsteht aus dem Graphen von {{formula}}f{{/formula}} durch Verschiebung um 1 in x-Richtung, Verschiebung um 3 in y-Richtung, Streckung mit dem Faktor 2 in y-Richtung und Spiegelung an der x-Achse. 38 -1. Der Graph von {{formula}}g{{/formula}} entsteht aus dem Graphen von {{formula}}f{{/formula}} durch Verschiebung um -1 in x-Richtung, Verschiebung um 3 in y-Richtung, Streckung mit dem Faktor 2 in y-Richtung und Spiegelung an der y-Achse. 51 +1. Bestimme die an der ersten Winkelhabierenden gespiegelten Funktionen {{formula}} f(x)=\frac{1}{x}; g(x)= \frac{1}{x^2} {{/formula}} und {{formula}} h(x)= \frac{2\,x+3}{-4\,x-2}{{/formula}} 52 +1. Bestimme graphisch den an der ersten Winkelhalbierenden gespiegelten Graphen zu den drei dargestellten Graphen. 53 + 54 +[[image:Einheitsuebergreifend2.png||width="400px"]] 39 39 {{/aufgabe}} 40 40 57 + 41 41 {{lehrende}} 42 42 Mit den ausgewählten Aufgaben sollten alle gefordeten Kompetenzen abgedeckt sein. Die Transformation wird nicht nur mit den drei im BP aufgeführten Funktionen, sondern mit allen möglichen Potenzfunktionen durchgeführt. 43 43 {{/lehrende}}
- Einheitsuebergreifend2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.niklaswunder - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +22.7 KB - Inhalt