Änderungen von Dokument BPE 3 Einheitsübergreifend
Zuletzt geändert von Holger Engels am 2025/04/05 14:50
Von Version 61.1
bearbeitet von Martin Rathgeb
am 2025/01/06 01:51
am 2025/01/06 01:51
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 67.1
bearbeitet von Martin Rathgeb
am 2025/01/06 21:37
am 2025/01/06 21:37
Änderungskommentar:
Neues Bild PoShenLoh-Quadratic.PNG hochladen
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -46,8 +46,13 @@ 46 46 1. Gesucht sind zwei ganze Zahlen, deren //Summe// 20 und deren //Produkt// 100 ist. 47 47 1. Gesucht sind zwei ganze Zahlen, deren //Summe// 20 und deren //Produkt// 91 ist. 48 48 1. Gesucht sind zwei ganze Zahlen, deren //Summe// 20 und deren //Produkt// um 9 kleiner ist als das Quadrat ihres arithmetischen Mittels. 49 -1. Gegeben sind Summe und Produkt zweier Zahlen {{formula}}x{{/formula}} und {{formula}}y{{/formula}}. Berechne daraus ihren Mittelwert {{formula}}m{{/formula}} und ihre Abweichung {{formula}}u{{/formula}} von {{formula}}m{{/formula}}; gemäß obiger Aufgabe lassen sich daraus die Zahlen {{formula}}x{{/formula}} und {{formula}}y{{/formula}} ermitteln. 50 -//Ansatz//. Schreibe im Produkt {{formula}}x\cdot y{{/formula}} die Faktoren als Summe bzw. Differenz von {{formula}}m{{/formula}} und {{formula}}u{{/formula}}; wende die dritte binomische Formel an und löse nach der Abweichung auf. 49 +1. (((Gegeben sind Summe und Produkt zweier Zahlen {{formula}}x{{/formula}} und {{formula}}y{{/formula}}. 50 +1. Berechne ihren Mittelwert {{formula}}m{{/formula}} und ihre Abweichung {{formula}}u{{/formula}} von {{formula}}m{{/formula}}. 51 +//Ansatz//. Schreibe im Produkt {{formula}}x\cdot y{{/formula}} die Faktoren als Summe bzw. Differenz von {{formula}}m{{/formula}} und {{formula}}u{{/formula}}; multipliziere aus; löse nach der Abweichung auf. 52 +1. Berechne die beiden Zahlen {{formula}}x{{/formula}} und {{formula}}y{{/formula}}. 53 + 54 +))) 55 +1. Gegeben ist eine normierte quadratische Gleichung {{formula}}x^2+px+q=0{{/formula}} mit reellen Nullstellen {{formula}}x_1, x_2{{/formula}}. Erläutere, dass die vorausgegangene Teilaufgabe auf die pq-Formel geführt hat. 51 51 {{/aufgabe}} 52 52 53 53 {{lehrende}}
- PoShenLoh-Quadratic.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.martinrathgeb - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +54.1 KB - Inhalt