Änderungen von Dokument BPE 3.2 Funktionsgraph
Zuletzt geändert von Holger Engels am 2025/03/31 21:43
Von Version 46.3
bearbeitet von Holger Engels
am 2024/11/15 11:17
am 2024/11/15 11:17
Änderungskommentar:
Kommentar hinzugefügt
Auf Version 62.1
bearbeitet von Holger Engels
am 2024/11/18 20:06
am 2024/11/18 20:06
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 2 hinzugefügt, 0 gelöscht)
-
Objekte (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -12,7 +12,11 @@ 12 12 Zeichne das Schaubild der Funktion {{formula}}f(x)=-0,5x^4+0,7x^3+2x^2-1{{/formula}} mit Hilfe einer Wertetabelle für {{formula}}-2\leq x\leq 3{{/formula}} in ein geeignetes Koordinatensystem ein. 13 13 {{/aufgabe}} 14 14 15 -{{aufgabe id="Symmetrie untersuchen" afb="II" kompetenzen="" quelle="Niklas Wunder" cc="by-sa" zeit="10"}} 15 +{{aufgabe id="Punkte" afb="I" kompetenzen="K4" quelle="Stefanie Schmidt" cc="by-sa" zeit="2"}} 16 +Das Schaubild einer Funktion, die punktsymmetrisch zum Ursprung ist, enthält die Punkte {{formula}}P_1(1|-2){{/formula}} und {{formula}}P_2(-3|4){{/formula}}. Nenne drei weitere Punkte, die auf dem Schaubild liegen. 17 +{{/aufgabe}} 18 + 19 +{{aufgabe id="Symmetrie untersuchen" afb="I" kompetenzen="K4,K5" quelle="Niklas Wunder" cc="by-sa" zeit="10"}} 16 16 Untersuche die Graphen der Funktionen auf Symmetrie zum Koordinatenursprung und zur y-Achse. 17 17 (% style="list-style:alphastyle" %) 18 18 1. {{formula}}f(x)=3\,x+1{{/formula}} ... ... @@ -23,8 +23,8 @@ 23 23 1. {{formula}}f(x)=x^4\,(x^3-3)\cdot (1-x){{/formula}} 24 24 {{/aufgabe}} 25 25 26 -{{aufgabe id="Symmetrie Parameter bestimmen" afb="II I" kompetenzen="" quelle="Niklas Wunder" cc="by-sa" zeit="8"}}27 -Bestimme einen Zahlenwert {{formula}}a{{/formula}} 30 +{{aufgabe id="Symmetrie Parameter bestimmen" afb="II" kompetenzen="K5" quelle="Niklas Wunder" cc="by-sa" zeit="8"}} 31 +Bestimme einen Zahlenwert {{formula}}a{{/formula}} so, dass der Graph symmetrisch zum Koordinatenursprung oder zur y- Achse ist. 28 28 a) {{formula}}f(x)=x+a{{/formula}} 29 29 b) {{formula}}f(x)=(x+1)\cdot (x-a){{/formula}} 30 30 c) {{formula}}f(x)=x\cdot (x+a)^2{{/formula}} ... ... @@ -31,7 +31,16 @@ 31 31 d) {{formula}}f(x)=x\cdot (x^2+a){{/formula}} 32 32 {{/aufgabe}} 33 33 34 -{{aufgabe id="Globalverlauf untersuchen" afb="I" kompetenzen="" quelle="Niklas Wunder, Martin Stern" cc="by-sa" zeit="4"}} 38 +{{aufgabe id="Vergleichsfunktion" afb="I" kompetenzen="K5,K6" quelle="Holger Engels" cc="by-sa" zeit="6"}} 39 +Gegeben ist die Funktion //f// mit {{formula}}f{\left ( x \right )} = \frac{1}{2} x^{3} - 10 x^{2} - 2 x + 1{{/formula}} 40 +Um den globalen Verlauf zu untersuchen, soll die Vergleichsfunktion bestimmt werden. Gehe folgedermaßen vor. 41 +1. Klammere //x// in der höchsten vorkommenden Potenz aus. 42 +1. Du erhältst ein Produkt aus {{formula}}x^3{{/formula}} und einer Summe. 43 +1. Streiche aus der Summe alle Summanden, die für große //x// vernachlässigbar klein werden. 44 +1. Es bleibt nur ein Summand übrig, die Klammern können also aufgelöst werden. 45 +{{/aufgabe}} 46 + 47 +{{aufgabe id="Globalverlauf untersuchen" afb="I" kompetenzen="K5,K6" quelle="Niklas Wunder, Martin Stern" cc="by-sa" zeit="4"}} 35 35 Untersuche das Verhalten der Funktion {{formula}}f{{/formula}} für {{formula}}x\rightarrow\pm \infty{{/formula}}: 36 36 (% style="list-style:alphastyle" %) 37 37 1. {{formula}}f(x)=-x^3{{/formula}} ... ... @@ -40,7 +40,7 @@ 40 40 1. {{formula}}f(x)=x\cdot(x+7)\cdot(x-7){{/formula}} 41 41 {{/aufgabe}} 42 42 43 -{{aufgabe id="Schnittpunkte mit den Koordinatenachsen bestimmen" afb="I" kompetenzen="" quelle="Niklas Wunder, Martin Stern" cc="by-sa"}} 56 +{{aufgabe id="Schnittpunkte mit den Koordinatenachsen bestimmen" afb="I" kompetenzen="K4,K5" quelle="Niklas Wunder, Martin Stern" cc="by-sa" zeit="5"}} 44 44 Bestimme jeweils die Schnittpunkte mit ihren Vielfachheiten des Graphen der Funktion {{formula}}f{{/formula}} mit den Koordinatenachsen: 45 45 (% style="list-style:alphastyle" %) 46 46 1. {{formula}}f(x)=-2(x-\frac{3}{2}){{/formula}} ... ... @@ -48,12 +48,21 @@ 48 48 1. {{formula}}f(x)=2\cdot(x-3)^3\cdot(x^2-4){{/formula}} 49 49 {{/aufgabe}} 50 50 51 -{{aufgabe id="Funktionsgraph mit Nullstellen skizzieren" afb="I" kompetenzen="" quelle="Niklas Wunder, Martin Stern" cc="by-sa"}} 52 -Gib die Nullstellen mit ihrer Vielfachheit an und skizziere anschließend den Graphen in einem geeigneten Intervall. Hinweis: Bei der e) gebe die Stellen mit {{formula}}f(x)=-1{{/formula}} an64 +{{aufgabe id="Funktionsgraph mit Nullstellen skizzieren" afb="I" kompetenzen="K4,K5" quelle="Niklas Wunder, Martin Stern" cc="by-sa" zeit="10"}} 65 +Gib die Nullstellen mit ihrer Vielfachheit an und skizziere anschließend den Graphen in einem geeigneten Intervall. 53 53 (% style="list-style:alphastyle" %) 54 -1. {{formula}}f_1(x)=(x-2)^2{{/formula}} //55 -1. {{formula}}f_2(x)=(x+2)^3{{/formula}} //56 -1. {{formula}}f_3(x)=(x-2)\cdot(x-3)\cdot x^2{{/formula}} //57 -1. {{formula}}f_4(x)=-\frac{1}{10}(x^2-9)\cdot x ^3{{/formula}}//58 -1. {{formula}}f_5(x)= \frac{1}{4}(x-2)^2\cdot(x+2)^2-1{{/formula}}67 +1. {{formula}}f_1(x)=(x-2)^2{{/formula}} 68 +1. {{formula}}f_2(x)=(x+2)^3{{/formula}} 69 +1. {{formula}}f_3(x)=(x-2)\cdot(x-3)\cdot x^2{{/formula}} 70 +1. {{formula}}f_4(x)=-\frac{1}{10}(x^2-9)\cdot (x-3){{/formula}} 71 +1. {{formula}}f_5(x) = (x-3)^5{{/formula}} 59 59 {{/aufgabe}} 73 + 74 +{{aufgabe id="Fertig zeichnen" afb="I" kompetenzen="K4" quelle="Stefanie Schmidt" cc="by-sa" zeit="3"}} 75 +Ergänze das Schaubild der Funktion //f// mit {{formula}}f(x)=\frac{1}{11,66}(x^7-8x^5+16x^3){{/formula}} im Intervall {{formula}}[0;2,5]{{/formula}}. 76 +[[image:Fertig zeichnen.svg]] 77 +{{/aufgabe}} 78 + 79 +{{lehrende}}K3 wurde bewusst weggelassen .. das kommt in BPE 3.5{{/lehrende}} 80 + 81 +{{seitenreflexion bildungsplan="5" kompetenzen="3" anforderungsbereiche="2" kriterien="3" menge="3"/}}
- Fertig zeichnen.ggb
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.holgerengels - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +51.6 KB - Inhalt
- Fertig zeichnen.svg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.holgerengels - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +23.8 KB - Inhalt
-
... ... @@ -1,0 +1,1 @@ 1 +<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="880" height="457"><defs><clipPath id="GWthWfPrbrzk"><path fill="none" stroke="none" d=" M 0 0 L 880 0 L 880 457 L 0 457 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#GWthWfPrbrzk)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="881" height="458" fill-opacity="1"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 28.5 0.5 L 28.5 457.5 M 28.5 0.5 L 28.5 457.5 M 110.5 0.5 L 110.5 457.5 M 192.5 0.5 L 192.5 457.5 M 274.5 0.5 L 274.5 457.5 M 355.5 0.5 L 355.5 457.5 M 519.5 0.5 L 519.5 457.5 M 601.5 0.5 L 601.5 457.5 M 682.5 0.5 L 682.5 457.5 M 764.5 0.5 L 764.5 457.5 M 846.5 0.5 L 846.5 457.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 12.5 0.5 L 12.5 457.5 M 45.5 0.5 L 45.5 457.5 M 61.5 0.5 L 61.5 457.5 M 77.5 0.5 L 77.5 457.5 M 94.5 0.5 L 94.5 457.5 M 126.5 0.5 L 126.5 457.5 M 143.5 0.5 L 143.5 457.5 M 159.5 0.5 L 159.5 457.5 M 176.5 0.5 L 176.5 457.5 M 208.5 0.5 L 208.5 457.5 M 225.5 0.5 L 225.5 457.5 M 241.5 0.5 L 241.5 457.5 M 257.5 0.5 L 257.5 457.5 M 290.5 0.5 L 290.5 457.5 M 306.5 0.5 L 306.5 457.5 M 323.5 0.5 L 323.5 457.5 M 339.5 0.5 L 339.5 457.5 M 372.5 0.5 L 372.5 457.5 M 388.5 0.5 L 388.5 457.5 M 404.5 0.5 L 404.5 457.5 M 421.5 0.5 L 421.5 457.5 M 453.5 0.5 L 453.5 457.5 M 470.5 0.5 L 470.5 457.5 M 486.5 0.5 L 486.5 457.5 M 502.5 0.5 L 502.5 457.5 M 535.5 0.5 L 535.5 457.5 M 551.5 0.5 L 551.5 457.5 M 568.5 0.5 L 568.5 457.5 M 584.5 0.5 L 584.5 457.5 M 617.5 0.5 L 617.5 457.5 M 633.5 0.5 L 633.5 457.5 M 650.5 0.5 L 650.5 457.5 M 666.5 0.5 L 666.5 457.5 M 699.5 0.5 L 699.5 457.5 M 715.5 0.5 L 715.5 457.5 M 731.5 0.5 L 731.5 457.5 M 748.5 0.5 L 748.5 457.5 M 780.5 0.5 L 780.5 457.5 M 797.5 0.5 L 797.5 457.5 M 813.5 0.5 L 813.5 457.5 M 829.5 0.5 L 829.5 457.5 M 862.5 0.5 L 862.5 457.5 M 878.5 0.5 L 878.5 457.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 53.5 L 880.5 53.5 M 0.5 53.5 L 880.5 53.5 M 0.5 135.5 L 880.5 135.5 M 0.5 299.5 L 880.5 299.5 M 0.5 380.5 L 880.5 380.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(192,192,192)" paint-order="fill stroke markers" d=" M 0.5 4.5 L 880.5 4.5 M 0.5 4.5 L 880.5 4.5 M 0.5 21.5 L 880.5 21.5 M 0.5 37.5 L 880.5 37.5 M 0.5 70.5 L 880.5 70.5 M 0.5 86.5 L 880.5 86.5 M 0.5 102.5 L 880.5 102.5 M 0.5 119.5 L 880.5 119.5 M 0.5 152.5 L 880.5 152.5 M 0.5 168.5 L 880.5 168.5 M 0.5 184.5 L 880.5 184.5 M 0.5 201.5 L 880.5 201.5 M 0.5 233.5 L 880.5 233.5 M 0.5 250.5 L 880.5 250.5 M 0.5 266.5 L 880.5 266.5 M 0.5 282.5 L 880.5 282.5 M 0.5 315.5 L 880.5 315.5 M 0.5 331.5 L 880.5 331.5 M 0.5 348.5 L 880.5 348.5 M 0.5 364.5 L 880.5 364.5 M 0.5 397.5 L 880.5 397.5 M 0.5 413.5 L 880.5 413.5 M 0.5 429.5 L 880.5 429.5 M 0.5 446.5 L 880.5 446.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 437.5 2.5 L 437.5 457.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 437.5 1.5 L 433.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 437.5 1.5 L 441.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 217.5 L 878.5 217.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 879.5 217.5 L 875.5 213.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 879.5 217.5 L 875.5 221.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="17" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="17" y="233" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">–2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="17" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="105" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="105" y="233" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="105" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="181" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="181" y="233" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="181" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="269" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="269" y="233" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="269" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="344" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="344" y="233" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="344" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="511" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0.5</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="511" y="233" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="511" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="599" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="599" y="233" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="599" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="674" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1.5</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="674" y="233" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="674" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="762" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="762" y="233" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="762" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="838" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2.5</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="838" y="233" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="838" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="417" y="385" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="417" y="385" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="417" y="385" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="407" y="304" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="407" y="304" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="407" y="304" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="413" y="140" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0.5</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="413" y="140" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="413" y="140" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0.5</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="423" y="58" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="423" y="58" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="423" y="58" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="423" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="423" y="233" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">0</text><text fill="rgb(37,37,37)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="423" y="233" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(46,125,50)" paint-order="fill stroke markers" d=" M 64.0234375 467.1301519313614 L 64.45312500000006 461.4018514424547 L 64.88281250000006 455.7625303562963 L 65.3125 450.2113521328224 L 65.7421875 444.74748543056944 L 66.171875 439.37010408534536 L 66.60156250000006 434.07838708894474 L 67.03125000000006 428.87151856792144 L 67.4609375 423.74868776241374 L 67.890625 418.70908900501865 L 68.75000000000006 408.8763903009075 L 69.609375 399.3670781662828 L 70.46875 390.17488844824925 L 71.32812500000006 381.29363646368506 L 72.1875 372.7172163359553 L 73.046875 364.4396003349784 L 73.90625000000006 356.45483822064034 L 74.765625 348.7570565895395 L 75.62500000000006 341.34045822505715 L 76.48437500000006 334.19932145075484 L 77.34375 327.32799948707685 L 78.20312500000006 320.720919811357 L 79.0625 314.3725835211275 L 79.921875 308.27756470070676 L 80.78125000000006 302.43050979107636 L 81.640625 296.82613696302525 L 82.50000000000006 291.459235493558 L 83.359375 286.32466514556575 L 84.21875 281.41735555073757 L 85.9375 272.2645828115124 L 87.65625 263.96172846014343 L 89.37500000000006 256.4706826313125 L 91.09375 249.75439523060373 L 92.8125 243.77685695940025 L 96.25000000000006 233.89908216232791 L 99.6875 226.5693914952567 L 103.12500000000006 221.535290520422 L 103.98437500000006 220.6072887604767 L 104.84375 219.80427138376842 L 106.5625 218.55918528704015 L 107.42187500000006 218.11025113641963 L 108.28125000000006 217.7725694462084 L 110.00000000000006 217.41782314411913 L 110.859375 217.3943199308569 L 111.71875 217.46919093771808 L 113.4375 217.9017460576442 L 114.29687500000006 218.25340179794654 L 115.15625 218.69137399918714 L 116.87500000000006 219.8147563036048 L 120.3125 222.97339440833042 L 123.75000000000006 227.20642920760378 L 127.1875 232.354359896018 L 130.62500000000006 238.26892993804725 L 134.0625 244.8126527122956 L 137.50000000000006 251.85834876039587 L 140.9375 259.2886945120214 L 144.37500000000006 266.99578235748356 L 147.8125 274.8806919393773 L 151.25000000000006 282.8530725347483 L 154.6875 290.8307363992431 L 158.12500000000006 298.7392629447163 L 161.5625 306.5116136217563 L 165 314.0877573786037 L 168.4375 321.4143065679236 L 171.875 328.44416317290455 L 175.3125 335.1361752241498 L 178.75 341.45480327882757 L 182.18750000000003 347.3697968335505 L 185.62500000000003 352.8558805424497 L 189.06250000000003 357.8924501119129 L 192.50000000000003 362.4632777434525 L 195.93750000000003 366.5562269961732 L 199.37500000000003 370.1629769403054 L 202.81250000000003 373.27875547327307 L 206.25000000000003 375.90208166976316 L 209.68750000000003 378.03451703726444 L 213.12500000000003 379.6804255485434 L 216.56250000000003 380.84674232252564 L 220.00000000000003 381.54275082504887 M 220.00000000000003 381.54275082504887 L 223.43750000000003 381.779868460957 L 226.87500000000003 381.5714404290019 L 230.31250000000003 380.9325417110202 L 233.75000000000003 379.879787066855 L 237.18750000000003 378.431148906487 L 240.62500000000003 376.6057829108456 L 244.06250000000003 374.4238612727658 L 247.50000000000003 371.9064134295594 L 250.93750000000003 369.0751741586683 L 254.37500000000003 365.9524389078673 L 257.8125 362.5609262314845 L 261.25 358.92364720410524 L 264.6875 355.06378168323124 L 268.125 351.00456129235783 L 271.5625 346.7691589959404 L 275 342.38058513771665 L 278.43750000000006 337.8615898138516 L 281.87500000000006 333.2345714523749 L 285.31250000000006 328.52149147037625 L 288.75000000000006 323.7437948804274 L 292.18750000000006 318.922336717699 L 295.62500000000006 314.0773141592391 L 299.06250000000006 309.22820420688146 L 302.5 304.39370680525093 L 305.9375 299.5916932663346 L 309.375 294.8391598720852 L 312.8125 290.15218652652555 L 316.25 285.5459003288205 L 319.6875 281.0344439387854 L 323.125 276.63094860629803 L 326.5625 272.3475117360819 L 330.00000000000006 268.19517885932834 M 330.00000000000006 268.19517885932834 L 333.43750000000006 264.1839298836256 L 336.87500000000006 260.32266949266216 L 340.31250000000006 256.61922156717253 L 343.75000000000006 253.08032749859245 L 347.18750000000006 249.71164826689187 L 350.62500000000006 246.51777015405307 L 354.06250000000006 243.50221396466196 L 357.50000000000006 240.66744762507972 L 360.93750000000006 238.01490203266283 L 364.37500000000006 235.54499002649945 L 367.81250000000006 233.25712835112915 L 371.25000000000006 231.14976248471436 L 374.68750000000006 229.22039420313084 L 378.12500000000006 227.46561175144507 L 381.56250000000006 225.88112249424628 L 385.00000000000006 224.4617879163005 M 385.00000000000006 224.4617879163005 L 388.43750000000006 223.20166084499473 L 391.87500000000006 222.09402476603893 L 395.31250000000006 221.131435103893 L 398.75000000000006 220.30576233838718 L 402.18750000000006 219.60823682900298 L 405.62500000000006 219.0294952182827 L 409.06250000000006 218.55962828583517 L 412.50000000000006 218.1882301244053 M 412.50000000000006 218.1882301244053 L 415.93750000000006 217.904448509475 L 419.37500000000006 217.6970363338639 L 422.81250000000006 217.5544039787965 L 426.25000000000006 217.46467249290436 M 426.25000000000006 217.46467249290436 L 429.68750000000006 217.41572745063047 L 433.12500000000006 217.39527336150394 M 433.12500000000006 217.39527336150394 L 436.56250000000006 217.39088850175216 M 436.56250000000006 217.39088850175216 L 437.54510935548757 217.39083977719713" stroke-opacity="0.8" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="2.5"/><text fill="rgb(46,125,50)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="78" y="441" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">K</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="78" y="441" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">K</text><text fill="rgb(46,125,50)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="78" y="441" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">K</text><text fill="rgb(46,125,50)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="14px" font-style="normal" font-weight="normal" text-decoration="normal" x="89" y="448" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">f</text><text fill="none" stroke="rgb(255,255,255)" font-family="geogebra-sans-serif, sans-serif" font-size="14px" font-style="normal" font-weight="normal" text-decoration="normal" x="89" y="448" text-anchor="start" dominant-baseline="alphabetic" stroke-opacity="1" stroke-linejoin="bevel" stroke-miterlimit="10" stroke-width="3">f</text><text fill="rgb(46,125,50)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="14px" font-style="normal" font-weight="normal" text-decoration="normal" x="89" y="448" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">f</text></g></g></svg>
- XWiki.XWikiComments[0]
-
- Kommentar
-
... ... @@ -1,1 +1,1 @@ 1 -Aufgabe "Schnittpunkte mit den Koordinatenachsen bestimmen" überarbeiten. 1 +Lösung zu Aufgabe "Schnittpunkte mit den Koordinatenachsen bestimmen" überarbeiten.
- XWiki.XWikiComments[2]
-
- Kommentar
-
... ... @@ -1,1 +1,1 @@ 1 -Eine Aufgabe, die das hierzeigt, warum der Summand mit der höchsten Potenz den Verlauf bestimmt (so etwa [[KMap>>https://kmap.eu/app/browser/Mathematik/Ganzrationale%20Funktionen/Verlauf#beispiel-----verhalten-im-unendlichen]])1 +Eine Aufgabe, die zeigt, warum der Summand mit der höchsten Potenz den Verlauf bestimmt (so etwa [[KMap>>https://kmap.eu/app/browser/Mathematik/Ganzrationale%20Funktionen/Verlauf#beispiel-----verhalten-im-unendlichen]])