Wiki-Quellcode von Lösung Globalverlauf untersuchen
Zuletzt geändert von Holger Engels am 2024/10/27 12:19
Verstecke letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| |
1.1 | 1 | (% style="list-style:alphastyle" %) |
| 2 | 1. ((({{formula}} | ||
| |
8.1 | 3 | \begin{align*} |
| |
7.1 | 4 | \lim_{x\rightarrow -\infty} -x^3= + \infty \\ |
| |
15.1 | 5 | \lim_{x\rightarrow +\infty} -x^3= - \infty |
| |
8.1 | 6 | \end{align*} |
| |
1.1 | 7 | {{/formula}} |
| 8 | ))) | ||
| |
14.1 | 9 | 1. ((({{formula}} |
| |
9.1 | 10 | \begin{align*} |
| |
4.1 | 11 | \lim_{x\rightarrow -\infty} 2x^4+3x^3-7x^2+x=\lim_{x\rightarrow -\infty} 2x^4= + \infty \\ |
| |
12.1 | 12 | \lim_{x\rightarrow +\infty} 2x^4+3x^3-7x^2+x=\lim_{x\rightarrow +\infty} 2x^4= + \infty |
| |
9.1 | 13 | \end{align*} |
| |
3.1 | 14 | {{/formula}} |
| 15 | ))) | ||
| |
10.1 | 16 | 1. ((({{formula}} |
| 17 | \begin{align*} | ||
| |
12.1 | 18 | \lim_{x\rightarrow -\infty} x^3+100x^2-0{,}01 x^6+1000=\lim_{x\rightarrow -\infty} -0{,}01 x^6= - \infty \\ |
| 19 | \lim_{x\rightarrow +\infty} x^3+100x^2-0{,}01 x^6+1000=\lim_{x\rightarrow +\infty} -0{,}01 x^6= - \infty | ||
| |
10.1 | 20 | \end{align*} |
| 21 | {{/formula}} | ||
| 22 | ))) | ||
| |
12.1 | 23 | 1. ((({{formula}} |
| 24 | \begin{align*} | ||
| 25 | \lim_{x\rightarrow -\infty} x\cdot(x+7)\cdot(x-7)=\lim_{x\rightarrow -\infty} x^3= - \infty \\ | ||
| 26 | \lim_{x\rightarrow +\infty} x\cdot(x+7)\cdot(x-7)=\lim_{x\rightarrow +\infty} x^3= + \infty | ||
| 27 | \end{align*} | ||
| 28 | {{/formula}} | ||
| 29 | ))) |