Wiki-Quellcode von Lösung Globalverlauf untersuchen
Zuletzt geändert von Holger Engels am 2024/10/27 13:19
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | (% style="list-style:alphastyle" %) | ||
2 | 1. ((({{formula}} | ||
3 | \begin{align*} | ||
4 | \lim_{x\rightarrow -\infty} -x^3= + \infty \\ | ||
5 | \lim_{x\rightarrow +\infty} -x^3= - \infty | ||
6 | \end{align*} | ||
7 | {{/formula}} | ||
8 | ))) | ||
9 | 1. ((({{formula}} | ||
10 | \begin{align*} | ||
11 | \lim_{x\rightarrow -\infty} 2x^4+3x^3-7x^2+x=\lim_{x\rightarrow -\infty} 2x^4= + \infty \\ | ||
12 | \lim_{x\rightarrow +\infty} 2x^4+3x^3-7x^2+x=\lim_{x\rightarrow +\infty} 2x^4= + \infty | ||
13 | \end{align*} | ||
14 | {{/formula}} | ||
15 | ))) | ||
16 | 1. ((({{formula}} | ||
17 | \begin{align*} | ||
18 | \lim_{x\rightarrow -\infty} x^3+100x^2-0{,}01 x^6+1000=\lim_{x\rightarrow -\infty} -0{,}01 x^6= - \infty \\ | ||
19 | \lim_{x\rightarrow +\infty} x^3+100x^2-0{,}01 x^6+1000=\lim_{x\rightarrow +\infty} -0{,}01 x^6= - \infty | ||
20 | \end{align*} | ||
21 | {{/formula}} | ||
22 | ))) | ||
23 | 1. ((({{formula}} | ||
24 | \begin{align*} | ||
25 | \lim_{x\rightarrow -\infty} x\cdot(x+7)\cdot(x-7)=\lim_{x\rightarrow -\infty} x^3= - \infty \\ | ||
26 | \lim_{x\rightarrow +\infty} x\cdot(x+7)\cdot(x-7)=\lim_{x\rightarrow +\infty} x^3= + \infty | ||
27 | \end{align*} | ||
28 | {{/formula}} | ||
29 | ))) |