Wiki-Quellcode von Lösung Symmetrie untersuchen
Zuletzt geändert von Niklas Wunder am 2024/10/27 09:49
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | Für Achsensymmetrie zur y-Achse gilt: {{formula}}f(x)=f(-x){{/formula}} | ||
2 | Für Punktsymmetrie zum Ursprung gilt: {{formula}}f(x)=-f(-x){{/formula}} | ||
3 | |||
4 | (% class="noborder" %) | ||
5 | |(% colspan="2" %)((( | ||
6 | (% style="list-style:alphastyle" %) | ||
7 | 1. {{formula}}f(x)=3x+1{{/formula}}))) | ||
8 | | (((Check y-Achse: {{formula}}f(-x)=3(-x)+1{{/formula}} | ||
9 | {{formula}}\Rightarrow 3x+1\neq-3x+1{{/formula}} ↯ | ||
10 | ))) | (((Check Ursprung: {{formula}}-f(-x)=-(3(-x)+1){{/formula}} | ||
11 | {{formula}}\Rightarrow 3x+1\neq3x-1{{/formula}} ↯ | ||
12 | ))) | ||
13 | |(% colspan="2" %)((( | ||
14 | (% style="list-style:alphastyle" start="2" %) | ||
15 | 1. {{formula}}f(x)=7{{/formula}}))) | ||
16 | | (((Check y-Achse: {{formula}}f(-x)=7{{/formula}} ✓ | ||
17 | ))) | (((Check Ursprung: {{formula}}-f(-x)=-7{{/formula}} ↯ | ||
18 | ))) | ||
19 | |(% colspan="2" %)((( | ||
20 | (% style="list-style:alphastyle" start="3" %) | ||
21 | 1. {{formula}}f(x)=4x^3-8x+2{{/formula}}))) | ||
22 | | (((Check y-Achse: {{formula}}f(-x)=4(-x)^3-8(-x)+2{{/formula}} | ||
23 | {{formula}}\Rightarrow 4x^3-8x+2\neq-4x^3+8x+2{{/formula}} ↯ | ||
24 | ))) | (((Check Ursprung: {{formula}}-f(-x)=-(4(-x)^3-8(-x)+2){{/formula}} | ||
25 | {{formula}}\Rightarrow 4x^3-8x+2\neq 4x^3-8x-2{{/formula}} ↯ | ||
26 | ))) | ||
27 | |(% colspan="2" %)((( | ||
28 | (% style="list-style:alphastyle" start="4" %) | ||
29 | 1. {{formula}}f(x)=-2x^4-9x^2+3{{/formula}}))) | ||
30 | | (((Check y-Achse: {{formula}}f(-x)=-2(-x)^4-9(-x)^2+3{{/formula}} | ||
31 | {{formula}}\Rightarrow -2x^4-9x^2+3=-2x^4-9x^2+3{{/formula}} ✓ | ||
32 | ))) | (((Check Ursprung: {{formula}}-f(-x)=-(-2(-x)^4-9(-x)^2+3){{/formula}} | ||
33 | {{formula}}\Rightarrow -2x^4-9x^2+3 \neq 2x^4+9x^2-3{{/formula}} ↯ | ||
34 | ))) | ||
35 | |(% colspan="2" %)((( | ||
36 | (% style="list-style:alphastyle" start="5" %) | ||
37 | 1. {{formula}}f(x)=(x^2-2)^3{{/formula}}))) | ||
38 | | (((Check y-Achse: {{formula}}f(-x)=((-x)^2-2)^3{{/formula}} | ||
39 | {{formula}}\Rightarrow (x^2-2)^3=(x^2-2)^3{{/formula}} ✓ | ||
40 | ))) | (((Check Ursprung: {{formula}}-f(-x)=-(((-x)^2-2)^3){{/formula}} | ||
41 | {{formula}}\Rightarrow (x^2-2)^3\neq-(x^2-2)^3{{/formula}} ↯ | ||
42 | ))) | ||
43 | |(% colspan="2" %)((( | ||
44 | (% style="list-style:alphastyle" start="6" %) | ||
45 | 1. {{formula}}f(x)=x^4(x^3-3)\cdot (1-x)=(x^7-3x^4)\cdot (1-x)=-x^8+x^7+3 x^5-3 x^4{{/formula}}))) | ||
46 | | (((Check y-Achse: {{formula}}f(-x)=(-x)^4((-x)^3-3)\cdot (1-(-x)){{/formula}} | ||
47 | {{formula}}\Rightarrow -x^8 + x^7 + 3 x^5 - 3 x^4=-x^8 - x^7 - 3 x^5 - 3 x^4{{/formula}} ↯ | ||
48 | ))) | (((Check Ursprung: {{formula}}-f(-x)=-((-x)^4((-x)^3-3)\cdot (1-(-x))){{/formula}} | ||
49 | {{formula}}\Rightarrow -x^8 + x^7 + 3 x^5 - 3 x^4 = x^8 + x^7 + 3 x^5 + 3 x^4{{/formula}} ↯ | ||
50 | ))) |