Änderungen von Dokument BPE 3.4 Polynomgleichungen
Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:20
Von Version 11.1
bearbeitet von Martina Wagner
am 2023/09/18 16:23
am 2023/09/18 16:23
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 7.1
bearbeitet von Martina Wagner
am 2023/09/18 13:54
am 2023/09/18 13:54
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -19,23 +19,40 @@ 19 19 a) {{formula}}0=-x^3-4096{{/formula}} 20 20 21 21 b) {{formula}}0=x^2 (x+3)(x-3)(x-8){{/formula}} 22 - 23 23 c) {{formula}}0=x^4-2x^2-35 {{/formula}} 24 24 25 25 {{/aufgabe}} 26 26 27 -{{aufgabe afb="I" kompetenzen=" K5" quelle="IQB 2019 Analysis gAN Teil 2 CAS" lizenz="[[CC BY 3.0>>https://creativecommons.org/licenses/by-sa/3.0/deed.de]]"}} 28 -Gegeben ist die in R definierte Funktion {{formula}} f:x mapsto x^3+2x^2{{/formula}}. 29 -Bestätigen Sie, dass {{formula}}x_1=-2 {{/formula}} und {{formula}} x_2=0 {{/formula}} die einzigen Nullstellen von f sind. 26 +{{aufgabe afb="I" kompetenzen="K2, K4, K5" quelle="IQB 2019 Analysis gAN Teil 2 CAS" lizenz="[[CC BY 3.0>>https://creativecommons.org/licenses/by-sa/3.0/deed.de]]"}} 27 +BMX-Fahrräder sind speziell für das Gelände ausgelegte Sportgeräte. Für den profes- 28 +sionellen Einsatz dieser Fahrräder wird auf horizontalem Untergrund eine 3 m breite 29 +Sprungschanze installiert. Im Längsschnitt der Schanze kann deren Profillinie für 30 +{{formula}}x ∈ 31 + \in\left[ -8;0 \right]{{/formula}} modellhaft durch die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion f mit 30 30 33 +{{formula}} 34 +f(x)=-\frac{5}{256}x^3-\frac{3}{4}x+2 35 +{{/formula}} 36 + 37 +beschrieben werden. Die Abbildung 1 zeigt den zugehörigen Teil des Graphen von //f//. 38 +Der Startpunkt, von dem aus die Schanze durchfahren wird, wird durch den Punkt 39 +{{formula}}S( -8 | f ( -8 ) ){{/formula}} dargestellt, der Absprungpunkt durch {{formula}}A(0 | f ( 0 ) ){{/formula}}. 40 + 41 +[[Abbildung 1>>image:Schanze.png]] 42 + 43 +Veranschaulichen Sie in Abbildung 1 die mittlere Steigung der Schanze zwischen 44 +Startpunkt und Absprungpunkt. Bestimmen Sie diese Steigung. 31 31 {{/aufgabe}} 32 32 33 33 {{aufgabe afb="II" kompetenzen="K3, K5" quelle="IQB 2019 Analysis gAN Teil 2 WTR" lizenz="[[CC BY 3.0>>https://creativecommons.org/licenses/by-sa/3.0/deed.de]]"}} 34 - Gegeben sinddie inRdefiniertenFunktioneng:x→x^2-3undh:x→-x^2+2x+1.35 - ZeigenSie, dass sichdieGraphen vongundhnurfür x=-1 undx=2schneiden.48 +Im Rahmen eines Tests läuft ein Sportler auf einem Laufband. Dabei wird bei ansteigender Geschwindigkeit jeweils die Konzentration sogenannter Laktate im Blut gemessen. 49 +Die Abhängigkeit der Laktatkonzentration von der Geschwindigkeit kann für {{formula}}8,5\leq x \leq 17,5{{/formula}} modellhaft durch die Funktion //k// beschrieben werden mit: 36 36 51 +{{formula}} 52 +k(x) = \frac{1}{40}(x^{3}-30x^{2}+288x-815) 53 +{{/formula}} 37 37 38 - 55 +Dabei ist {{formula}}x{{/formula}} die Geschwindigkeit des Sportlers in Kilometer pro Stunde und //k// die Laktatkonzentration in Millimol pro Liter {{formula}}\frac{mmol}{l}{{/formula}}. Berechnen Sie im Modell für den Geschwindigkeitsbereich von 12 bis 17,5 {{formula}}\frac{km}{h}{{/formula}} die mittlere Änderungsrate der Laktatkonzentration. 39 39 {{/aufgabe}} 40 40 41 41 {{aufgabe afb="II" kompetenzen="K2, K4, K5" quelle="Abi 2012 Anwendung, modifiziert"}}