Änderungen von Dokument Lösung Anwendung drei Verfahren

Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23

Von Version 10.1
bearbeitet von Martin Rathgeb
am 2025/04/06 23:50
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 28.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:19
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -3,90 +3,62 @@
3 3  
4 4  **Lösungsschritte:**
5 5  (% class="abc" %)
6 -1. //Tabellarisches Verfahren (Teil 1).//
6 +1. **Tabellarisches Verfahren (Teil 1).**
7 7  
8 -**Wertetabelle I (ganzzahlige Werte):**
8 +//Wertetabelle I.//
9 +
9 9  (% class="border slim" %)
10 10  |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}|
11 11  |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|
12 12  
13 -**Interpretation:**
14 -Die Funktion nimmt in diesen Punkten ausschließlich nicht-negative Werte an. Nur bei {{formula}}x = \pm 1{{/formula}} wird der Funktionswert null. Zwischen diesen Punkten bleibt das Verhalten unklar – wir sehen noch keine negativen Werte. Eine genauere Untersuchung ist nötig.
14 +//Interpretation.//
15 +Die Funktionswerte sind überall nicht-negativ. Bei {{formula}}x = \pm 1{{/formula}} ergibt sich jeweils {{formula}}f(x) = 0{{/formula}}. Zwischen den Nullstellen ist das Vorzeichenverhalten noch unklar.
15 15  
16 -2. //Tabellarisches Verfahren (Teil 2).//
17 +2. **Tabellarisches Verfahren (Teil 2).**
17 17  
18 -**Wertetabelle II (ergänzende Zwischenwerte):**
19 +//Wertetabelle II.//
19 19  (% class="border slim" %)
20 -|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}}|
21 -|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}<0{{/formula}}|{{formula}}0{{/formula}} |{{formula}}>0{{/formula}}|{{formula}}3{{/formula}}|{{formula}}>0{{/formula}}||{{formula}}0{{/formula}} |{{formula}}<0{{/formula}}|{{formula}}3{{/formula}}|
21 +|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}}
22 +|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}}
22 22  
23 -**Interpretation:**
24 -Nun zeigt sich:
25 -(i) Für diejenigen {{formula}}x{{/formula}} mit {{formula}}x<-2{{/formula}}, {{formula}}-1<x<+1[{{/formula}} und {{formula}}+2<x{{/formula}} gilt {{formula}}f(x)>0{{/formula}}.
26 -(ii) Für diejenigen {{formula}}x{{/formula}} mit {{formula}}-1,5<x<-1{{/formula}}, {{formula}}+1<x<+1,5[{{/formula}} gilt {{formula}}f(x)<{{/formula}}.
27 -(iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn für beide Intervalle gilt: An den Rändern hat {{formula}}f(x){{\formula}} unterschiedliche Vorzeichen.
28 28  
29 -3. **Graphische Skizze:**
25 +*Interpretation:*
26 +- {{formula}}f(x) < 0{{/formula}} für {{formula}}x = \pm 1{,}5{{/formula}}
27 +- {{formula}}f(x) > 0{{/formula}} für {{formula}}x = \pm 0{,}5{{/formula}}
28 +→ In den Intervallen zwischen {{formula}}x = -1{,}5{{/formula}} und {{formula}}x = -1{{/formula}}, sowie zwischen {{formula}}x = 1{{/formula}} und {{formula}}x = 1{,}5{{/formula}}, wechselt das Vorzeichen.
30 30  
31 -Die Funktion ist **geraden Grades** (4) mit **positivem Leitkoeffizienten** (1). Daraus folgt:
32 -- {{formula}}\lim_{x \to \pm \infty} f(x) = +\infty{{/formula}}
33 -- Die Funktion ist **achsensymmetrisch**, da alle Potenzen gerade sind.
34 -- Die vorherige Tabelle zeigt, dass der Graph in der Nähe von {{formula}}x = \pm 1{{/formula}} die x-Achse berührt und dazwischen negativ wird.
35 35  
36 -**Lage zur x-Achse:**
37 -- Nullstellen: {{formula}}x = -\sqrt{3},\ -1,\ 1,\ \sqrt{3}{{/formula}}
38 -- Graph liegt **oberhalb der x-Achse** für:
39 - - {{formula}}x < -\sqrt{3}{{/formula}}
40 - - {{formula}}-1 < x < 1{{/formula}}
41 - - {{formula}}x > \sqrt{3}{{/formula}}
31 +//Interpretation.//
32 +i) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x{{/formula}} kleiner -2, für alle {{formula}}x{{/formula}} zwischen -1 und +1 und für alle {{formula}}x{{/formula}} größer +2.
33 +ii) Entsprechend gilt {{formula}}f(x)<0{{/formula}} für alle {{formula}}x{{/formula}} zwischen -1,5 und -1 und für alle {{formula}}x{{/formula}} zwischen +1 und +1,5.
34 +iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen.
42 42  
43 ----
36 +3. **Graphische Skizze:**
44 44  
38 +i) Der Graph von {{formula}}f{{/formula}} ist //symmetrisch zur y-Achse//, denn {{formula}}f{{/formula}} ist //gerade//, denn die im Funktionsterm der Polynomfunktion {{formula}}f{{/formula}} auftretenden x-Potenzen sind allesamt gerade.
39 +ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn die Vergleichsfunktion von {{formula}}f{{/formula}} ist die Potenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}.
40 +iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse zwischen -2 und -1,5 (VZW +/-), bei {{formula}}x=-1{{/formula}} (VZW -/+), bei {{formula}}x=+1{{/formula}} (VZW +/-) und zwischen +1,5 und +2 (VZW -/+).
41 +iv) Also gilt {{formula}}f(x)>0{{/formula}} zunächst bis zur ersten Nullstelle (zwischen -2 und -1,5 gelegen), weiter zwischen den Nullstellen -1 und +1 und zuletzt ab der vierten Nullstelle (zwischen +1,5 und +2 gelegen).
42 +
45 45  4. **Rechnerisches Verfahren:**
46 46  
47 -Faktorisieren:
45 +i) //Faktorisieren// (Satz von Vieta zzgl. dritte binomische Formel): {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x +\sqrt{3})(x+1)(x -1)(x -\sqrt{3}){{/formula}}
46 +ii) //Nullstellen// (jeweils 1-fach): {{formula}}-\sqrt{3}{{/formula}}, {{formula}}-1{{/formula}}, {{formula}}+1{{/formula}}, {{formula}}+\sqrt{3}{{/formula}}
47 +iii) //Vorzeichenanalyse://
48 +iii.1) Wenn die Vielfachheiten aller Nullstellen bekannt sind, dann genügt auch das Globalverhalten bzw. eine Teststelle.
49 +iii.2) Naives Vorgehen: Wähle in jedem der fünf Teilintervalle eine //Teststelle// und ermittle das Vorzeichen vom zugehörigen Funktionswert.
48 48  
49 -{{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x - 1)(x + 1)(x - \sqrt{3})(x + \sqrt{3}){{/formula}}
50 -
51 -**Nullstellen:**
52 -
53 -{{formula}}x = -\sqrt{3},\ -1,\ 1,\ \sqrt{3}{{/formula}}
54 -
55 -**Vorzeichenanalyse:**
56 -
57 57  | Intervall | Testwert | Vorzeichen von {{formula}}f(x){{/formula}} |
58 -|----------------------------------|----------|---------------------------------------------|
59 -| {{formula}}x < -\sqrt{3}{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} |
60 -| {{formula}}(-\sqrt{3}, -1){{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}f(x) = -0{,}9375 < 0{{/formula}} |
61 -| {{formula}}(-1,\ 1){{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} |
62 -| {{formula}}(1,\ \sqrt{3}){{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) = -0{,}9375 < 0{{/formula}} |
63 -| {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} |
52 +| {{formula}}x < -\sqrt{3}{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
53 +| {{formula}}]-\sqrt{3}; -1[{{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} |
54 +| {{formula}}]-1;\ 1[{{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
55 +| {{formula}}]1;\ \sqrt{3}[{{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} |
56 +| {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
64 64  
65 -**Gesuchte Lösung:**
66 -{{formula}}f(x) > 0{{/formula}} ist erfüllt für
58 +iv) //Gesuchte Lösung://
59 +Es ist {{formula}}f(x) > 0{{/formula}} erfüllt für alle {{formula}}x\in \mathbb{L}\quad =\quad ]-\infty; -\sqrt{3}[ \quad\cup\quad ]-1; +1[ \quad\cup\quad ]\sqrt{3}; +\infty[{{/formula}}
67 67  
68 -**L** = {{formula}}(-\infty,\ -\sqrt{3}) \cup (-1,\ 1) \cup (\sqrt{3},\ \infty){{/formula}}
69 -
70 ----
71 -
72 -5. **Vergleich der Verfahren:**
73 -
74 -- Das **tabellarische Verfahren** gibt erste Hinweise auf das Verhalten der Funktion, eignet sich zur Erkundung durch systematisches Probieren, bleibt aber ungenau bei der Bestimmung von Nullstellenpositionen.
75 -- Das **graphische Verfahren** bietet anschauliche Orientierung: Vorzeichenwechsel, Lage zur x-Achse und Symmetrie werden sichtbar. Es stützt das funktionale Verständnis, ist aber zeichengenauigkeitsabhängig.
76 -- Das **rechnerische Verfahren** liefert exakte Aussagen zu Nullstellen, Intervallen und Lösungsmenge. Es ist unverzichtbar für formale Sicherheit, setzt jedoch algebraische Fähigkeiten voraus.
77 -
78 -**Didaktisch:**
79 -Die Verfahren stehen in einer natürlichen Lernprogression:
80 -Vom **konkreten Probieren (Tabelle)** über das **visuelle Erfassen (Graph)** hin zum **symbolischen Durchdringen (Rechnung)**. Ihr Zusammenspiel stärkt nachhaltiges Verständnis für das Verhalten ganzrationaler Funktionen.
81 -
82 -{{/loesung}}
83 -
84 ----
85 -
86 -**Zusammenfassung:**
61 +**Anmerkung:**
87 87  - Das **tabellarische Verfahren** zeigt erste Hinweise auf Nullstellen und Verläufe.
88 88  - Das **graphische Verfahren** unterstützt die visuelle Einschätzung von Steigung und Vorzeichenbereichen.
89 89  - Das **rechnerische Verfahren** liefert die exakte Lösung in Produktform und damit eine genaue Bestimmung der Lösungsmenge.
90 -
91 -{{/loesung}}
92 -