Änderungen von Dokument Lösung Anwendung drei Verfahren
Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23
Von Version 20.1
bearbeitet von Martin Rathgeb
am 2025/04/07 00:29
am 2025/04/07 00:29
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 14.1
bearbeitet von Martin Rathgeb
am 2025/04/07 00:12
am 2025/04/07 00:12
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -17,13 +17,13 @@ 17 17 18 18 **Wertetabelle II (ergänzende Zwischenwerte):** 19 19 (% class="border slim" %) 20 -|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}} 21 -|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}} 20 +|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}}| 21 +|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}}| 22 22 23 23 **Interpretation:** 24 24 i) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x{{/formula}} kleiner -2, für alle {{formula}}x{{/formula}} zwischen -1 und +1 und für alle {{formula}}x{{/formula}} größer +2. 25 25 ii) Entsprechend gilt {{formula}}f(x)<0{{/formula}} für alle {{formula}}x{{/formula}} zwischen -1,5 und -1 und für alle {{formula}}x{{/formula}} zwischen +1 und +1,5. 26 -iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn beibeidenIntervallenhaben die Funktionswertean den RändernverschiedeneVorzeichen.26 +iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn für beide Intervalle gilt: An den Rändern hat {{formula}}f(x){{/formula}} unterschiedliche Vorzeichen. 27 27 28 28 3. **Graphische Skizze:** 29 29 ... ... @@ -34,11 +34,9 @@ 34 34 35 35 4. **Rechnerisches Verfahren:** 36 36 37 -i) //Faktorisieren// (Satz von Vieta zzgl. dritte binomische Formel): {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x +\sqrt{3})(x+1)(x -1)(x -\sqrt{3}){{/formula}} 38 -ii) //Nullstellen// (jeweils 1-fach): {{formula}}-\sqrt{3}{{/formula}}, {{formula}}-1{{/formula}}, {{formula}}+1{{/formula}}, {{formula}}+\sqrt{3}{{/formula}} 39 -iii) //Vorzeichenanalyse:// 40 -iii.1) Wenn die Vielfachheiten aller Nullstellen bekannt sind, dann genügt auch das Globalverhalten bzw. eine Teststelle. 41 -iii.2) Naives Vorgehen: Wähle in jedem der fünf Teilintervalle eine //Teststelle// und ermittle das Vorzeichen vom zugehörigen Funktionswert. 37 +i) Faktorisieren: {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x -(-\sqrt{3})(x -(- 1))(x - (+1))(x - (+\sqrt{3}){{/formula}} 38 +ii) Nullstellen: {{formula}}x = -\sqrt{3},\ -1,\ 1,\ \sqrt{3}{{/formula}} 39 +iii) Vorzeichenanalyse: 42 42 43 43 | Intervall | Testwert | Vorzeichen von {{formula}}f(x){{/formula}} | 44 44 |----------------------------------|----------|---------------------------------------------| ... ... @@ -48,10 +48,29 @@ 48 48 | {{formula}}(1,\ \sqrt{3}){{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) = -0{,}9375 < 0{{/formula}} | 49 49 | {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} | 50 50 51 -iv) //Gesuchte Lösung://52 - Es ist{{formula}}f(x) > 0{{/formula}} erfüllt füralle{{formula}}x\in \mathbb{L}=]-\infty; -\sqrt{3}[\:\cup\:]-1; +1[ \:\cup\:]\sqrt{3}; +\infty[{{/formula}}49 +iv) Gesuchte Lösung: 50 +{{formula}}f(x) > 0{{/formula}} ist erfüllt für {{formula}}\mathbb{L}=]-\infty; -\sqrt{3}[ \cup ]-1; +1[ \cup ]\sqrt{3}; +\infty[{{/formula}} 53 53 54 -**Anmerkung:** 52 +--- 53 + 54 +5. **Vergleich der Verfahren:** 55 + 56 +- Das **tabellarische Verfahren** gibt erste Hinweise auf das Verhalten der Funktion, eignet sich zur Erkundung durch systematisches Probieren, bleibt aber ungenau bei der Bestimmung von Nullstellenpositionen. 57 +- Das **graphische Verfahren** bietet anschauliche Orientierung: Vorzeichenwechsel, Lage zur x-Achse und Symmetrie werden sichtbar. Es stützt das funktionale Verständnis, ist aber zeichengenauigkeitsabhängig. 58 +- Das **rechnerische Verfahren** liefert exakte Aussagen zu Nullstellen, Intervallen und Lösungsmenge. Es ist unverzichtbar für formale Sicherheit, setzt jedoch algebraische Fähigkeiten voraus. 59 + 60 +**Didaktisch:** 61 +Die Verfahren stehen in einer natürlichen Lernprogression: 62 +Vom **konkreten Probieren (Tabelle)** über das **visuelle Erfassen (Graph)** hin zum **symbolischen Durchdringen (Rechnung)**. Ihr Zusammenspiel stärkt nachhaltiges Verständnis für das Verhalten ganzrationaler Funktionen. 63 + 64 +{{/loesung}} 65 + 66 +--- 67 + 68 +**Zusammenfassung:** 55 55 - Das **tabellarische Verfahren** zeigt erste Hinweise auf Nullstellen und Verläufe. 56 56 - Das **graphische Verfahren** unterstützt die visuelle Einschätzung von Steigung und Vorzeichenbereichen. 57 57 - Das **rechnerische Verfahren** liefert die exakte Lösung in Produktform und damit eine genaue Bestimmung der Lösungsmenge. 72 + 73 +{{/loesung}} 74 +