Änderungen von Dokument Lösung Anwendung drei Verfahren

Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23

Von Version 28.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:19
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 17.1
bearbeitet von Martin Rathgeb
am 2025/04/07 00:25
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -3,32 +3,24 @@
3 3  
4 4  **Lösungsschritte:**
5 5  (% class="abc" %)
6 -1. **Tabellarisches Verfahren (Teil 1).**
6 +1. //Tabellarisches Verfahren (Teil 1).//
7 7  
8 -//Wertetabelle I.//
9 -
8 +**Wertetabelle I (ganzzahlige Werte):**
10 10  (% class="border slim" %)
11 -|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}|
12 -|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|
10 +|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}
11 +|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}}
13 13  
14 -//Interpretation.//
15 -Die Funktionswerte sind überall nicht-negativ. Bei {{formula}}x = \pm 1{{/formula}} ergibt sich jeweils {{formula}}f(x) = 0{{/formula}}. Zwischen den Nullstellen ist das Vorzeichenverhalten noch unklar.
13 +**Interpretation:**
14 +Die Funktion nimmt in diesen Punkten ausschließlich nicht-negative Werte an. Nur bei {{formula}}x = \pm 1{{/formula}} wird der Funktionswert null. Zwischen diesen Punkten bleibt das Verhalten unklar – wir sehen noch keine negativen Werte. Eine genauere Untersuchung ist nötig.
16 16  
17 -2. **Tabellarisches Verfahren (Teil 2).**
16 +2. //Tabellarisches Verfahren (Teil 2).//
18 18  
19 -//Wertetabelle II.//
18 +**Wertetabelle II (ergänzende Zwischenwerte):**
20 20  (% class="border slim" %)
21 21  |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}}
22 22  |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}}
23 23  
24 -
25 -*Interpretation:*
26 -- {{formula}}f(x) < 0{{/formula}} für {{formula}}x = \pm 1{,}5{{/formula}}
27 -- {{formula}}f(x) > 0{{/formula}} für {{formula}}x = \pm 0{,}5{{/formula}}
28 -→ In den Intervallen zwischen {{formula}}x = -1{,}5{{/formula}} und {{formula}}x = -1{{/formula}}, sowie zwischen {{formula}}x = 1{{/formula}} und {{formula}}x = 1{,}5{{/formula}}, wechselt das Vorzeichen.
29 -
30 -
31 -//Interpretation.//
23 +**Interpretation:**
32 32  i) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x{{/formula}} kleiner -2, für alle {{formula}}x{{/formula}} zwischen -1 und +1 und für alle {{formula}}x{{/formula}} größer +2.
33 33  ii) Entsprechend gilt {{formula}}f(x)<0{{/formula}} für alle {{formula}}x{{/formula}} zwischen -1,5 und -1 und für alle {{formula}}x{{/formula}} zwischen +1 und +1,5.
34 34  iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen.
... ... @@ -42,23 +42,43 @@
42 42  
43 43  4. **Rechnerisches Verfahren:**
44 44  
45 -i) //Faktorisieren// (Satz von Vieta zzgl. dritte binomische Formel): {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x +\sqrt{3})(x+1)(x -1)(x -\sqrt{3}){{/formula}}
46 -ii) //Nullstellen// (jeweils 1-fach): {{formula}}-\sqrt{3}{{/formula}}, {{formula}}-1{{/formula}}, {{formula}}+1{{/formula}}, {{formula}}+\sqrt{3}{{/formula}}
47 -iii) //Vorzeichenanalyse://
37 +i) Faktorisieren (Satz von Vieta zzgl. dritte binomische Formel): {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x +\sqrt{3})(x+1)(x -1)(x -\sqrt{3}){{/formula}}
38 +ii) Nullstellen (jeweils 1-fach): {{formula}}-\sqrt{3}{{/formula}}, {{formula}}-1{{/formula}}, {{formula}}+1{{/formula}}, {{formula}}+\sqrt{3}{{/formula}}
39 +iii) Vorzeichenanalyse:
48 48  iii.1) Wenn die Vielfachheiten aller Nullstellen bekannt sind, dann genügt auch das Globalverhalten bzw. eine Teststelle.
49 49  iii.2) Naives Vorgehen: Wähle in jedem der fünf Teilintervalle eine //Teststelle// und ermittle das Vorzeichen vom zugehörigen Funktionswert.
50 50  
51 51  | Intervall | Testwert | Vorzeichen von {{formula}}f(x){{/formula}} |
52 -| {{formula}}x < -\sqrt{3}{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
53 -| {{formula}}]-\sqrt{3}; -1[{{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} |
54 -| {{formula}}]-1;\ 1[{{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
55 -| {{formula}}]1;\ \sqrt{3}[{{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} |
56 -| {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
44 +|----------------------------------|----------|---------------------------------------------|
45 +| {{formula}}x < -\sqrt{3}{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} |
46 +| {{formula}}(-\sqrt{3}, -1){{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}f(x) = -0{,}9375 < 0{{/formula}} |
47 +| {{formula}}(-1,\ 1){{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} |
48 +| {{formula}}(1,\ \sqrt{3}){{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) = -0{,}9375 < 0{{/formula}} |
49 +| {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} |
57 57  
58 -iv) //Gesuchte Lösung://
59 -Es ist {{formula}}f(x) > 0{{/formula}} erfüllt für alle {{formula}}x\in \mathbb{L}\quad =\quad ]-\infty; -\sqrt{3}[ \quad\cup\quad ]-1; +1[ \quad\cup\quad ]\sqrt{3}; +\infty[{{/formula}}
51 +iv) Gesuchte Lösung:
52 +{{formula}}f(x) > 0{{/formula}} ist erfüllt für {{formula}}\mathbb{L}=]-\infty; -\sqrt{3}[ \cup ]-1; +1[ \cup ]\sqrt{3}; +\infty[{{/formula}}
60 60  
61 -**Anmerkung:**
54 +---
55 +
56 +5. **Vergleich der Verfahren:**
57 +
58 +- Das **tabellarische Verfahren** gibt erste Hinweise auf das Verhalten der Funktion, eignet sich zur Erkundung durch systematisches Probieren, bleibt aber ungenau bei der Bestimmung von Nullstellenpositionen.
59 +- Das **graphische Verfahren** bietet anschauliche Orientierung: Vorzeichenwechsel, Lage zur x-Achse und Symmetrie werden sichtbar. Es stützt das funktionale Verständnis, ist aber zeichengenauigkeitsabhängig.
60 +- Das **rechnerische Verfahren** liefert exakte Aussagen zu Nullstellen, Intervallen und Lösungsmenge. Es ist unverzichtbar für formale Sicherheit, setzt jedoch algebraische Fähigkeiten voraus.
61 +
62 +**Didaktisch:**
63 +Die Verfahren stehen in einer natürlichen Lernprogression:
64 +Vom **konkreten Probieren (Tabelle)** über das **visuelle Erfassen (Graph)** hin zum **symbolischen Durchdringen (Rechnung)**. Ihr Zusammenspiel stärkt nachhaltiges Verständnis für das Verhalten ganzrationaler Funktionen.
65 +
66 +{{/loesung}}
67 +
68 +---
69 +
70 +**Zusammenfassung:**
62 62  - Das **tabellarische Verfahren** zeigt erste Hinweise auf Nullstellen und Verläufe.
63 63  - Das **graphische Verfahren** unterstützt die visuelle Einschätzung von Steigung und Vorzeichenbereichen.
64 64  - Das **rechnerische Verfahren** liefert die exakte Lösung in Produktform und damit eine genaue Bestimmung der Lösungsmenge.
74 +
75 +{{/loesung}}
76 +