Änderungen von Dokument Lösung Anwendung drei Verfahren

Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23

Von Version 28.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:19
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 30.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:34
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -21,24 +21,17 @@
21 21  |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}}
22 22  |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}}
23 23  
24 -
25 -*Interpretation:*
26 -- {{formula}}f(x) < 0{{/formula}} für {{formula}}x = \pm 1{,}5{{/formula}}
27 -- {{formula}}f(x) > 0{{/formula}} für {{formula}}x = \pm 0{,}5{{/formula}}
28 -→ In den Intervallen zwischen {{formula}}x = -1{,}5{{/formula}} und {{formula}}x = -1{{/formula}}, sowie zwischen {{formula}}x = 1{{/formula}} und {{formula}}x = 1{,}5{{/formula}}, wechselt das Vorzeichen.
29 -
30 -
31 31  //Interpretation.//
32 -i) Also gilt {{formula}}f(x)>0{{/formula}} r alle {{formula}}x{{/formula}} kleiner -2, für alle {{formula}}x{{/formula}} zwischen -1 und +1 und für alle {{formula}}x{{/formula}} größer +2.
33 -ii) Entsprechend gilt {{formula}}f(x)<0{{/formula}} für alle {{formula}}x{{/formula}} zwischen -1,5 und -1 und für alle {{formula}}x{{/formula}} zwischen +1 und +1,5.
34 -iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen.
25 +i) Wir kennen nun nicht nur die beiden Nullstellen {{formula}}x=\pm 1{{/formula}}, sondern wissen auch, dass es in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} noch jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}} gibt, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen.
26 +ii) Nach dem Fundamentalsatz der Algebra hat die Polynomfunktion {{formula}}f{{/formula}} (vom Grad 4) unter Berücksichtigung der Vielfachheiten nur bis zu 4 reelle Nullstellen. Also sind alle Nullstellen von {{formula}}f{{/formula}} einfach mit {{formula}}-2<x_1<-1,5{{/formula}}, {{formula}}x_2=-1{{/formula}}, {{formula}}x_3=+1{{/formula}} und {{formula}}+1,5<x_4<2{{/formula}}.
27 +iii) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x<x_1{{/formula}}, für alle {{formula}}x_2<x<x_3{{/formula}} und r alle {{formula}}x>x_4{{/formula}}.
35 35  
36 36  3. **Graphische Skizze:**
37 37  
38 38  i) Der Graph von {{formula}}f{{/formula}} ist //symmetrisch zur y-Achse//, denn {{formula}}f{{/formula}} ist //gerade//, denn die im Funktionsterm der Polynomfunktion {{formula}}f{{/formula}} auftretenden x-Potenzen sind allesamt gerade.
39 39  ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn die Vergleichsfunktion von {{formula}}f{{/formula}} ist die Potenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}.
40 -iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse zwischen -2 und -1,5 (VZW +/-), bei {{formula}}x=-1{{/formula}} (VZW -/+), bei {{formula}}x=+1{{/formula}} (VZW +/-) und zwischen +1,5 und +2 (VZW -/+).
41 -iv) Also gilt {{formula}}f(x)>0{{/formula}} zunächst bis zur ersten Nullstelle (zwischen -2 und -1,5 gelegen), weiter zwischen den Nullstellen -1 und +1 und zuletzt ab der vierten Nullstelle (zwischen +1,5 und +2 gelegen).
33 +iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse bei {{formula}}x_1{{/formula}} zwischen -2 und -1,5 (mit VZW +/-), bei {{formula}}x_2=-1{{/formula}} (mit VZW -/+), bei {{formula}}x_3=+1{{/formula}} (mit VZW +/-) und bei {{formula}}x_4{{/formula}} zwischen +1,5 und +2 (mit VZW -/+).
34 +iv) Also gilt {{formula}}f(x)>0{{/formula}} r alle {{formula}}x<x_1{{/formula}}, r alle {{formula}}x_2<x<x_3{{/formula}} und r alle {{formula}}x>x_4{{/formula}}.
42 42  
43 43  4. **Rechnerisches Verfahren:**
44 44