Änderungen von Dokument Lösung Anwendung drei Verfahren
Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23
Von Version 29.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:33
am 2025/04/07 01:33
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 31.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:35
am 2025/04/07 01:35
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -31,13 +31,13 @@ 31 31 i) Der Graph von {{formula}}f{{/formula}} ist //symmetrisch zur y-Achse//, denn {{formula}}f{{/formula}} ist //gerade//, denn die im Funktionsterm der Polynomfunktion {{formula}}f{{/formula}} auftretenden x-Potenzen sind allesamt gerade. 32 32 ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn die Vergleichsfunktion von {{formula}}f{{/formula}} ist die Potenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}. 33 33 iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse bei {{formula}}x_1{{/formula}} zwischen -2 und -1,5 (mit VZW +/-), bei {{formula}}x_2=-1{{/formula}} (mit VZW -/+), bei {{formula}}x_3=+1{{/formula}} (mit VZW +/-) und bei {{formula}}x_4{{/formula}} zwischen +1,5 und +2 (mit VZW -/+). 34 -iv) Also gilt {{formula}}f(x)>0{{/formula}} für {{formula}}x<x_1{{/formula}}, {{formula}}x_2<x<x_3{{/formula}} und {{formula}}x>x_4{{/formula}}. 34 +iv) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x<x_1{{/formula}}, für alle {{formula}}x_2<x<x_3{{/formula}} und für alle {{formula}}x>x_4{{/formula}}. 35 35 36 36 4. **Rechnerisches Verfahren:** 37 37 38 38 i) //Faktorisieren// (Satz von Vieta zzgl. dritte binomische Formel): {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x +\sqrt{3})(x+1)(x -1)(x -\sqrt{3}){{/formula}} 39 39 ii) //Nullstellen// (jeweils 1-fach): {{formula}}-\sqrt{3}{{/formula}}, {{formula}}-1{{/formula}}, {{formula}}+1{{/formula}}, {{formula}}+\sqrt{3}{{/formula}} 40 -iii) //Vorzeichenanalyse ://40 +iii) //Vorzeichenanalyse.// 41 41 iii.1) Wenn die Vielfachheiten aller Nullstellen bekannt sind, dann genügt auch das Globalverhalten bzw. eine Teststelle. 42 42 iii.2) Naives Vorgehen: Wähle in jedem der fünf Teilintervalle eine //Teststelle// und ermittle das Vorzeichen vom zugehörigen Funktionswert. 43 43