Änderungen von Dokument Lösung Anwendung drei Verfahren

Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23

Von Version 29.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:33
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 31.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:35
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -31,13 +31,13 @@
31 31  i) Der Graph von {{formula}}f{{/formula}} ist //symmetrisch zur y-Achse//, denn {{formula}}f{{/formula}} ist //gerade//, denn die im Funktionsterm der Polynomfunktion {{formula}}f{{/formula}} auftretenden x-Potenzen sind allesamt gerade.
32 32  ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn die Vergleichsfunktion von {{formula}}f{{/formula}} ist die Potenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}.
33 33  iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse bei {{formula}}x_1{{/formula}} zwischen -2 und -1,5 (mit VZW +/-), bei {{formula}}x_2=-1{{/formula}} (mit VZW -/+), bei {{formula}}x_3=+1{{/formula}} (mit VZW +/-) und bei {{formula}}x_4{{/formula}} zwischen +1,5 und +2 (mit VZW -/+).
34 -iv) Also gilt {{formula}}f(x)>0{{/formula}} für {{formula}}x<x_1{{/formula}}, {{formula}}x_2<x<x_3{{/formula}} und {{formula}}x>x_4{{/formula}}.
34 +iv) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x<x_1{{/formula}}, für alle {{formula}}x_2<x<x_3{{/formula}} und für alle {{formula}}x>x_4{{/formula}}.
35 35  
36 36  4. **Rechnerisches Verfahren:**
37 37  
38 38  i) //Faktorisieren// (Satz von Vieta zzgl. dritte binomische Formel): {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x +\sqrt{3})(x+1)(x -1)(x -\sqrt{3}){{/formula}}
39 39  ii) //Nullstellen// (jeweils 1-fach): {{formula}}-\sqrt{3}{{/formula}}, {{formula}}-1{{/formula}}, {{formula}}+1{{/formula}}, {{formula}}+\sqrt{3}{{/formula}}
40 -iii) //Vorzeichenanalyse://
40 +iii) //Vorzeichenanalyse.//
41 41  iii.1) Wenn die Vielfachheiten aller Nullstellen bekannt sind, dann genügt auch das Globalverhalten bzw. eine Teststelle.
42 42  iii.2) Naives Vorgehen: Wähle in jedem der fünf Teilintervalle eine //Teststelle// und ermittle das Vorzeichen vom zugehörigen Funktionswert.
43 43