Änderungen von Dokument Lösung Anwendung drei Verfahren
Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23
Von Version 31.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:35
am 2025/04/07 01:35
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 26.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:18
am 2025/04/07 01:18
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -5,39 +5,39 @@ 5 5 (% class="abc" %) 6 6 1. **Tabellarisches Verfahren (Teil 1).** 7 7 8 -//Wertetabelle I .//8 +//Wertetabelle I:// 9 9 10 10 (% class="border slim" %) 11 11 |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}| 12 12 |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}}| 13 13 14 -//Interpretation .//14 +//Interpretation:// 15 15 Die Funktionswerte sind überall nicht-negativ. Bei {{formula}}x = \pm 1{{/formula}} ergibt sich jeweils {{formula}}f(x) = 0{{/formula}}. Zwischen den Nullstellen ist das Vorzeichenverhalten noch unklar. 16 16 17 17 2. **Tabellarisches Verfahren (Teil 2).** 18 18 19 -//Wertetabelle II .//19 +//Wertetabelle II:// 20 20 (% class="border slim" %) 21 21 |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}} 22 22 |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}} 23 23 24 -//Interpretation .//25 -i) Wirkennen nun nicht nur die beiden Nullstellen{{formula}}x=\pm 1{{/formula}},sondernwissenauch, dass es in den Intervallen{{formula}}]-2; -1,5[{{/formula}}und{{formula}}]+1,5; +2[{{/formula}}noch jeweilsmindestenseineNullstellevon{{formula}}f{{/formula}} gibt, denn bei beiden Intervallen haben die Funktionswertean den Rändern verschiedene Vorzeichen.26 -ii) Nach dem Fundamentalsatz derAlgebrahat diePolynomfunktion{{formula}}f{{/formula}}(vom Grad 4) unter Berücksichtigung derVielfachheiten nur bis zu 4 reelleNullstellen. Also sind alle Nullstellen von{{formula}}f{{/formula}}einfachmit {{formula}}-2<x_1<-1,5{{/formula}},{{formula}}x_2=-1{{/formula}},{{formula}}x_3=+1{{/formula}} und{{formula}}+1,5<x_4<2{{/formula}}.27 -iii) Alsogilt {{formula}}f(x)>0{{/formula}}füralle{{formula}}x<x_1{{/formula}},füralle {{formula}}x_2<x<x_3{{/formula}}undfür{{formula}}x>x_4{{/formula}}.24 +//Interpretation:// 25 +i) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x{{/formula}} kleiner -2, für alle {{formula}}x{{/formula}} zwischen -1 und +1 und für alle {{formula}}x{{/formula}} größer +2. 26 +ii) Entsprechend gilt {{formula}}f(x)<0{{/formula}} für alle {{formula}}x{{/formula}} zwischen -1,5 und -1 und für alle {{formula}}x{{/formula}} zwischen +1 und +1,5. 27 +iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen. 28 28 29 29 3. **Graphische Skizze:** 30 30 31 31 i) Der Graph von {{formula}}f{{/formula}} ist //symmetrisch zur y-Achse//, denn {{formula}}f{{/formula}} ist //gerade//, denn die im Funktionsterm der Polynomfunktion {{formula}}f{{/formula}} auftretenden x-Potenzen sind allesamt gerade. 32 32 ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn die Vergleichsfunktion von {{formula}}f{{/formula}} ist die Potenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}. 33 -iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse bei {{formula}}x_1{{/formula}}zwischen -2 und -1,5 (mitVZW +/-), bei {{formula}}x_2=-1{{/formula}} (mitVZW -/+), bei {{formula}}x_3=+1{{/formula}} (mitVZW +/-) undbei {{formula}}x_4{{/formula}}zwischen +1,5 und +2 (mitVZW -/+).34 -iv) Also gilt {{formula}}f(x)>0{{/formula}} füralle{{formula}}x<x_1{{/formula}},füralle{{formula}}x_2<x<x_3{{/formula}}undfüralle{{formula}}x>x_4{{/formula}}.33 +iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse zwischen -2 und -1,5 (VZW +/-), bei {{formula}}x=-1{{/formula}} (VZW -/+), bei {{formula}}x=+1{{/formula}} (VZW +/-) und zwischen +1,5 und +2 (VZW -/+). 34 +iv) Also gilt {{formula}}f(x)>0{{/formula}} zunächst bis zur ersten Nullstelle (zwischen -2 und -1,5 gelegen), weiter zwischen den Nullstellen -1 und +1 und zuletzt ab der vierten Nullstelle (zwischen +1,5 und +2 gelegen). 35 35 36 36 4. **Rechnerisches Verfahren:** 37 37 38 38 i) //Faktorisieren// (Satz von Vieta zzgl. dritte binomische Formel): {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x +\sqrt{3})(x+1)(x -1)(x -\sqrt{3}){{/formula}} 39 39 ii) //Nullstellen// (jeweils 1-fach): {{formula}}-\sqrt{3}{{/formula}}, {{formula}}-1{{/formula}}, {{formula}}+1{{/formula}}, {{formula}}+\sqrt{3}{{/formula}} 40 -iii) //Vorzeichenanalyse .//40 +iii) //Vorzeichenanalyse:// 41 41 iii.1) Wenn die Vielfachheiten aller Nullstellen bekannt sind, dann genügt auch das Globalverhalten bzw. eine Teststelle. 42 42 iii.2) Naives Vorgehen: Wähle in jedem der fünf Teilintervalle eine //Teststelle// und ermittle das Vorzeichen vom zugehörigen Funktionswert. 43 43