Version 28.1 von Martin Rathgeb am 2025/04/07 01:19

Zeige letzte Bearbeiter
1 **Aufgabenstellung:**
2 Gegeben ist die Polynomfunktion {{formula}}f{{/formula}} mit {{formula}}f(x) = x^4 - 4x^2 + 3{{/formula}}. Untersuche, für welche Werte von {{formula}}x{{/formula}} die Ungleichung {{formula}}f(x) > 0{{/formula}} erfüllt ist. Vergleiche dazu die drei grundlegenden Verfahren zur Bearbeitung einer Polynomungleichung:
3
4 **Lösungsschritte:**
5 (% class="abc" %)
6 1. **Tabellarisches Verfahren (Teil 1).**
7
8 //Wertetabelle I.//
9
10 (% class="border slim" %)
11 |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}|
12 |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|
13
14 //Interpretation.//
15 Die Funktionswerte sind überall nicht-negativ. Bei {{formula}}x = \pm 1{{/formula}} ergibt sich jeweils {{formula}}f(x) = 0{{/formula}}. Zwischen den Nullstellen ist das Vorzeichenverhalten noch unklar.
16
17 2. **Tabellarisches Verfahren (Teil 2).**
18
19 //Wertetabelle II.//
20 (% class="border slim" %)
21 |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}}
22 |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}}
23
24
25 *Interpretation:*
26 - {{formula}}f(x) < 0{{/formula}} für {{formula}}x = \pm 1{,}5{{/formula}}
27 - {{formula}}f(x) > 0{{/formula}} für {{formula}}x = \pm 0{,}5{{/formula}}
28 → In den Intervallen zwischen {{formula}}x = -1{,}5{{/formula}} und {{formula}}x = -1{{/formula}}, sowie zwischen {{formula}}x = 1{{/formula}} und {{formula}}x = 1{,}5{{/formula}}, wechselt das Vorzeichen.
29
30
31 //Interpretation.//
32 i) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x{{/formula}} kleiner -2, für alle {{formula}}x{{/formula}} zwischen -1 und +1 und für alle {{formula}}x{{/formula}} größer +2.
33 ii) Entsprechend gilt {{formula}}f(x)<0{{/formula}} für alle {{formula}}x{{/formula}} zwischen -1,5 und -1 und für alle {{formula}}x{{/formula}} zwischen +1 und +1,5.
34 iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen.
35
36 3. **Graphische Skizze:**
37
38 i) Der Graph von {{formula}}f{{/formula}} ist //symmetrisch zur y-Achse//, denn {{formula}}f{{/formula}} ist //gerade//, denn die im Funktionsterm der Polynomfunktion {{formula}}f{{/formula}} auftretenden x-Potenzen sind allesamt gerade.
39 ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn die Vergleichsfunktion von {{formula}}f{{/formula}} ist die Potenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}.
40 iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse zwischen -2 und -1,5 (VZW +/-), bei {{formula}}x=-1{{/formula}} (VZW -/+), bei {{formula}}x=+1{{/formula}} (VZW +/-) und zwischen +1,5 und +2 (VZW -/+).
41 iv) Also gilt {{formula}}f(x)>0{{/formula}} zunächst bis zur ersten Nullstelle (zwischen -2 und -1,5 gelegen), weiter zwischen den Nullstellen -1 und +1 und zuletzt ab der vierten Nullstelle (zwischen +1,5 und +2 gelegen).
42
43 4. **Rechnerisches Verfahren:**
44
45 i) //Faktorisieren// (Satz von Vieta zzgl. dritte binomische Formel): {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x +\sqrt{3})(x+1)(x -1)(x -\sqrt{3}){{/formula}}
46 ii) //Nullstellen// (jeweils 1-fach): {{formula}}-\sqrt{3}{{/formula}}, {{formula}}-1{{/formula}}, {{formula}}+1{{/formula}}, {{formula}}+\sqrt{3}{{/formula}}
47 iii) //Vorzeichenanalyse://
48 iii.1) Wenn die Vielfachheiten aller Nullstellen bekannt sind, dann genügt auch das Globalverhalten bzw. eine Teststelle.
49 iii.2) Naives Vorgehen: Wähle in jedem der fünf Teilintervalle eine //Teststelle// und ermittle das Vorzeichen vom zugehörigen Funktionswert.
50
51 | Intervall | Testwert | Vorzeichen von {{formula}}f(x){{/formula}} |
52 | {{formula}}x < -\sqrt{3}{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
53 | {{formula}}]-\sqrt{3}; -1[{{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} |
54 | {{formula}}]-1;\ 1[{{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
55 | {{formula}}]1;\ \sqrt{3}[{{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} |
56 | {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
57
58 iv) //Gesuchte Lösung://
59 Es ist {{formula}}f(x) > 0{{/formula}} erfüllt für alle {{formula}}x\in \mathbb{L}\quad =\quad ]-\infty; -\sqrt{3}[ \quad\cup\quad ]-1; +1[ \quad\cup\quad ]\sqrt{3}; +\infty[{{/formula}}
60
61 **Anmerkung:**
62 - Das **tabellarische Verfahren** zeigt erste Hinweise auf Nullstellen und Verläufe.
63 - Das **graphische Verfahren** unterstützt die visuelle Einschätzung von Steigung und Vorzeichenbereichen.
64 - Das **rechnerische Verfahren** liefert die exakte Lösung in Produktform und damit eine genaue Bestimmung der Lösungsmenge.