Lösung Schnittstellen Polynom-Gerade

Zuletzt geändert von akukin am 2025/07/24 10:21

Um die x-Koordinaten der Schnittpunkt zu bestimmen, setzen wir die Gleichungen gleich und formen um:

\[\begin{align} \frac{1}{3}x^3-\frac{4}{3}x+1&=1 &&\mid -1 \\ \frac{1}{3}x^3-\frac{4}{3}x&=0 && \text{Ausklammern}\\ x \left(\frac{1}{3}x^2-\frac{4}{3}\right)&=0 \end{align}\]

Mit dem Satz vom Nullprodukt, erhalten wir \(x_1=0\).
Nun müssen wir noch schauen, für welche \(x\) der Term in der Klammer 0 wird:

\[\begin{align} \frac{1}{3}x^2-\frac{4}{3}&=0 &&\mid +\frac{4}{3} \\ \frac{1}{3}x^2&=\frac{4}{3} &&\mid :\frac{1}{3} \\ x^2 &= 4 &&\mid \sqrt \\ x_{2,3}&=\pm \sqrt{4}=\pm 2 \end{align}\]

Die x-Koordinaten der Schnittpunkt sind somit gegeben durch \(x_1=0, \ x_2=-2, \ x_3=2\).