Lösung Basiswechsel

Zuletzt geändert von akukin am 2025/08/11 15:24

  1. \(f(x)=(\frac{1}{4})^x\), neue Basis \(b=2\)

    \[\frac{1}{4} = 2^{-2} \Rightarrow f(x)=2^{-2x}\]
  2. \(f(x)=9^x\), neue Basis \(b=\frac{1}{3}\)

    \[9 = \left(\frac{1}{3}\right)^{-2} \Rightarrow f(x)=\left(\frac{1}{3}\right)^{-2x}\]
  3. \(f(x)=5^{2x+1}\), neue Basis \(b=25\)

    \[5 = 25^{\frac{1}{2}} \Rightarrow f(x)=25^{\frac{1}{2}\cdot(2x+1)}=25^{x+\frac{1}{2}}\]