Änderungen von Dokument BPE 4.5 Logarithmus und Exponentialgleichungen
Zuletzt geändert von Holger Engels am 2025/03/13 07:51
Von Version 123.2
bearbeitet von Holger Engels
am 2025/03/03 21:22
am 2025/03/03 21:22
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 127.1
bearbeitet von Martin Rathgeb
am 2025/03/11 22:02
am 2025/03/11 22:02
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.martinrathgeb - Inhalt
-
... ... @@ -7,6 +7,7 @@ 7 7 [[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Nullstelle interpretieren 8 8 [[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann die Lösungen einer Exponentialgleichung als Schnittstelle zweier Funktionen interpretieren 9 9 10 +{{lehrende}} 10 10 Aufgaben: 11 11 – Logarithmus: graphisches Ermitteln vs. Operator 12 12 Lösen von Exponentialgleichungen: ... ... @@ -17,9 +17,10 @@ 17 17 - Näherungslösungen 18 18 19 19 Gleichungen: 20 -x+y = e --> y = e - x 21 -x*y = e --> y = e / x 22 -e^y = x --> y = ln(x) 21 +{{formula}}x\pm y = e \Rightarrow y = e \mp x{{/formula}} 22 +{{formula}}x*y = e \Rightarrow y = e / x{{/formula}} 23 +{{formula}}e^y = x \Rightarrow y = \ln(x){{/formula}} 24 +{{/lehrende}} 23 23 24 24 {{aufgabe id="Gleichungen aufstellen I" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="5"}} 25 25 Nenne jeweils eine passende Gleichung: ... ... @@ -50,14 +50,12 @@ 50 50 )))|[[image:2^-xund8.svg||width="200px"]] 51 51 |{{formula}} 2^{-x} = 8 {{/formula}}|{{formula}} x = \log_{2}(8) {{/formula}} |((( 52 52 |x|0|1|2|3 53 -|y|1|\frac{1}{2}|\frac{1}{4}|\frac{1}{8} 55 +|y|1|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{1}{4}{{/formula}}|{{formula}}\frac{1}{8}{{/formula}} 54 54 )))|[[image:x^3und8.svg||width="200px"]] 55 55 |{{formula}} 2^x = 8 {{/formula}}|{{formula}} x = x = \frac{1}{\sqrt[3]{8}} {{/formula}} |((( 56 56 |x|0|1|2|3 57 -|y|n.d.|1|\frac{1}{8}|\frac{1}{27} 59 +|y|n.d.|1|{{formula}}\frac{1}{8}{{/formula}}|{{formula}}\frac{1}{27}{{/formula}} 58 58 )))|[[image:x^-3und8.svg||width="200px"]] 59 - 60 - 61 61 {{/aufgabe}} 62 62 63 63 {{aufgabe id="Logarithmen auswerten" afb="II" kompetenzen="K4,K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}} ... ... @@ -87,12 +87,11 @@ 87 87 Aufgabe als Dokument im Anhang ‚unten‘. 88 88 {{/aufgabe}} 89 89 90 - 91 91 {{aufgabe id="Gleichungstypen einstudieren" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="20"}} 92 92 Bestimme die Lösung der folgenden Gleichungen: 93 93 94 94 (% class="border slim " %) 95 -|Typ 1 Umkehroperationen|Typ 2 Ausklammern|Typ 3 Substitution 94 +|Typ 1 (Umkehroperationen)|Typ 2 (Ausklammern)|Typ 3 (Substitution) 96 96 |{{formula}}x^2 = 2{{/formula}}|{{formula}}x^2-2x = 0{{/formula}}|{{formula}}x^4-40x^2+144 = 0{{/formula}} 97 97 |{{formula}}x^4 = e{{/formula}}|{{formula}}2x^e = x^{2e}{{/formula}}|{{formula}}x^{2x}+x^e+1 = 0{{/formula}} 98 98 |{{formula}}e^x = e{{/formula}}|{{formula}}2e^x = e^{2x}{{/formula}}|{{formula}}10^{6x}-2\cdot 10^{3x}+1 = 0{{/formula}} ... ... @@ -99,14 +99,6 @@ 99 99 |{{formula}}3e^x = \frac{1}{2}e^{-x}{{/formula}}|{{formula}}x\cdot 3^x+4\cdot 3^x = 0{{/formula}}|{{formula}}3e^x-1 = \frac{1}{3}e^{-x}{{/formula}} 100 100 {{/aufgabe}} 101 101 102 -Nenne eine passende Gleichung. Die Gleichung kann ich nach x auflösen, indem ich … 103 -(% class="abc" %) 104 -1. … die Terme auf beiden Seiten durch 5 dividiere und damit die Lösung {{formula}} x = \frac{2}{5} {{/formula}} erhalte. 105 -1. … von beiden Termen die 5-te Wurzel ziehe und damit die Lösung {{formula}} x = \sqrt[5]{2} {{/formula}} erhalte. 106 -1. … die Terme auf beiden Seiten zur Basis 5 logarithmiere und damit die Lösung {{formula}} x = \log_5(2) {{/formula}} erhalte. 107 -{{/aufgabe}} 108 - 109 - 110 110 {{aufgabe id="Exponentialgleichungen (Logarithmieren)" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="15"}} 111 111 Bestimme die Lösungsmenge der Exponentialgleichung: 112 112 (% class="abc" %)