Änderungen von Dokument BPE 4.5 Logarithmus und Exponentialgleichungen
Zuletzt geändert von Holger Engels am 2025/05/21 15:19
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -72,9 +72,9 @@ 72 72 1. {{formula}} \log_{10}(10) {{/formula}} 73 73 {{/aufgabe}} 74 74 75 -{{aufgabe id="Exponentialgleichungen lösen (graphisch versus rechnerisch)" afb="II" kompetenzen="K 4,K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}}75 +{{aufgabe id="Exponentialgleichungen lösen (graphisch versus rechnerisch)" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}} 76 76 (% class="abc" %) 77 -Ermittle die Lösung der Gleichung {{formula}} e^x = 5 {{/formula}} graphisch und rechnerisch.77 +Ermittle die Lösung der Gleichung {{formula}} 2^x = 5 {{/formula}} graphisch und rechnerisch. 78 78 {{/aufgabe}} 79 79 80 80 {{aufgabe id="Gleichungen aufstellen I" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="5"}} ... ... @@ -87,6 +87,10 @@ 87 87 1. … die Terme auf beiden Seiten zur Basis 5 logarithmiere und damit die Lösung {{formula}} x = \log_5(2) {{/formula}} erhalte. 88 88 {{/aufgabe}} 89 89 90 +{{aufgabe id="Gleichungen aufstellen II" afb="I" kompetenzen="K2,K5" quelle="Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}} 91 +Nenne möglichst viele (wahre) Gleichungen der folgenden Formen, wobei {{formula}} a, b, c \in \{2; 3; 4; \ldots; 16\} {{/formula}} gelten soll: 92 +{{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:; \qquad c = a\cdot b\:. {{/formula}} 93 +{{/aufgabe}} 90 90 91 91 {{aufgabe id="Darstellungen zuordnen" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="6"}} 92 92 Ordne zu: ... ... @@ -291,9 +291,4 @@ 291 291 [[image:ExpGlei.svg||width="600px"]] 292 292 {{/aufgabe}} 293 293 294 -{{aufgabe id="Gleichungen aufstellen II" afb="III" kompetenzen="K2,K5" quelle="Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}} 295 -Nenne möglichst viele (wahre) Gleichungen der folgenden Formen, wobei {{formula}} a, b, c \in \{2; 3; 4; \ldots; 16\} {{/formula}} gelten soll: 296 -{{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:; \qquad c = a\cdot b\:. {{/formula}} 297 -{{/aufgabe}} 298 - 299 299 {{seitenreflexion/}}