Zuletzt geändert von akukin am 2025/08/11 14:43

Von Version 78.1
bearbeitet von Martin Rathgeb
am 2025/02/26 10:39
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 112.1
bearbeitet von Elke Hallmann
am 2025/02/26 14:29
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.martinrathgeb
1 +XWiki.elkehallmanngmxde
Inhalt
... ... @@ -21,8 +21,10 @@
21 21  x*y = e --> y = e / x
22 22  e^y = x --> y = ln(x)
23 23  
24 -{{aufgabe id="Exponentialgleichungen lösen (Fehlvorstellungen)" afb="I" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="5"}}
25 -Nenne eine passende Gleichung. Die Gleichung kann ich nach x auflösen, indem ich {{formula}} \ldots {{/formula}}
24 +{{aufgabe id="Gleichungen aufstellen I" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="5"}}
25 +Nenne jeweils eine passende Gleichung:
26 +
27 +Die Gleichung kann ich nach x auflösen, indem ich{{formula}} \ldots {{/formula}}
26 26  (% class="abc" %)
27 27  1. {{formula}} \ldots {{/formula}} die Terme auf beiden Seiten durch 5 dividiere und damit die Lösung {{formula}} x = \frac{2}{5} {{/formula}} erhalte.
28 28  1. {{formula}} \ldots {{/formula}} von beiden Termen die 5-te Wurzel ziehe und damit die Lösung {{formula}} x = \sqrt[5]{2} {{/formula}} erhalte.
... ... @@ -29,17 +29,33 @@
29 29  1. {{formula}} \ldots {{/formula}} die Terme auf beiden Seiten zur Basis 5 logarithmiere und damit die Lösung {{formula}} x = \log_5(2) {{/formula}} erhalte.
30 30  {{/aufgabe}}
31 31  
32 -{{aufgabe id="Gleichungsformen instantiieren" afb="I" kompetenzen="K2,K5" quelle="Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}}
34 +{{aufgabe id="Gleichungen aufstellen II" afb="I" kompetenzen="K2,K5" quelle="Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}}
33 33  Nenne möglichst viele (wahre) Gleichungen der folgenden Formen, wobei {{formula}} a, b, c \in \{2; 3; 4; \ldots; 16\} {{/formula}} gelten soll:
34 -{{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:. {{/formula}}
36 +{{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:; \qquad c = a\cdot b\:. {{/formula}}
35 35  {{/aufgabe}}
36 36  
37 37  {{aufgabe id="Darstellungen zuordnen" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}}
38 -Ordne zu!
39 -(% class="abc" %)
40 -1. vier Gleichungen
41 -1. zwei Tabellen
42 -1. zwei Graphen
40 +Ordne zu:
41 +(% class="border slim " %)
42 +|Implizite Gleichungen|Explizite Gleichungen|Wertetabellen|Schaubilder
43 +|{{formula}} x^{-3} = 8 {{/formula}}|{{formula}} x = \sqrt[3]{8} {{/formula}}|(((
44 +|x|0|1|2|3
45 +|y|1|2|4|8
46 +)))|[[image:2^xund8.svg||width="200px"]]
47 +|{{formula}} 2^x = 8 {{/formula}}|{{formula}} x = -\log_{2}(8) {{/formula}} |(((
48 +|x|0|1|2|3
49 +|y|0|1|8|27
50 +)))|[[image:x^3und8.svg||width="200px"]]
51 +|{{formula}} 2^{-x} = 8 {{/formula}}|{{formula}} x = \log_{2}(8) {{/formula}} |(((
52 +|x|0|1|2|3
53 +|y|0|1|8|27
54 +)))|[[image:x^3und8.svg||width="200px"]]
55 +|{{formula}} 2^x = 8 {{/formula}}|{{formula}} x = x = \sqrt[3]{8} {{/formula}} |(((
56 +|x|0|1|2|3
57 +|y|0|1|8|27
58 +)))|[[image:x^3und8.svg||width="200px"]]
59 +
60 +
43 43  {{/aufgabe}}
44 44  
45 45  {{aufgabe id="Logarithmen auswerten" afb="II" kompetenzen="K4,K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}}
... ... @@ -48,28 +48,48 @@
48 48  [[image:Logarithmus_neu.svg||width="600px"]]
49 49  
50 50  (% class="abc" %)
51 -1. {{formula}} \log_{10}(10) {{/formula}}
52 -1. {{formula}} \log_{100}(10) {{/formula}}
53 -1. {{formula}} \log_{11}(10) {{/formula}}
69 +1. {{formula}} \log_{10}(0.1) {{/formula}}
70 +1. {{formula}} \log_{100}(0.1) {{/formula}}
71 +1. {{formula}} \log_{0.1}(0.1) {{/formula}}
54 54  1. {{formula}} \log_{10}(1000) {{/formula}}
55 55  1. {{formula}} \log_{10}(50) {{/formula}}
56 -1. {{formula}} \log_{11}(1000) {{/formula}}
74 +1. {{formula}} \log_{0.1}(1000) {{/formula}}
57 57  1. {{formula}} \log_{10}(1) {{/formula}}
58 58  1. {{formula}} \log_{100}(10) {{/formula}}
59 59  1. {{formula}} \log_{10}(10) {{/formula}}
60 60  {{/aufgabe}}
61 61  
62 -{{aufgabe id="Exponentialgleichungen lösen (graphisch vs rechnerisch)" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}}
80 +{{aufgabe id="Exponentialgleichungen lösen (graphisch versus rechnerisch)" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="5"}}
63 63  (% class="abc" %)
64 64  Ermittle die Lösung der Gleichung {{formula}} 2^x = 5 {{/formula}} graphisch und rechnerisch.
65 65  {{/aufgabe}}
66 66  
67 -{{aufgabe id="Exponentialgleichungen Lösbarkeit (graphisch vs rechnerisch)" afb="I" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="6"}}
85 +{{aufgabe id="Exponentialgleichungen Lösbarkeit (graphisch versus rechnerisch)" afb="I" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="6"}}
68 68  (% class="abc" %)
69 69  Gegeben sind die beiden Gleichungen {{formula}} x^2 = a {{/formula}} und {{formula}} 2^x = a {{/formula}} für {{formula}} a \in \mathbb{R} {{/formula}}. Untersuche ihre Lösbarkeit in Abhängigkeit von {{formula}} a {{/formula}}.
70 70  {{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:. {{/formula}}
71 71  {{/aufgabe}}
72 72  
91 +
92 +{{aufgabe id="Gleichungstypen einstudieren" afb="II" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe, Martina Wagner" cc="BY-SA" zeit="20"}}
93 +Bestimme die Lösung der folgenden Gleichungen:
94 +
95 +(% class="border slim " %)
96 +|Typ 1 Umkehroperationen|Typ 2 Ausklammern|Typ 3 Substitution
97 +|{{formula}}x^2 = 2{{/formula}}|{{formula}}x^2-2x = 0{{/formula}}|{{formula}}x^4-40x^2+144 = 0{{/formula}}
98 +|{{formula}}x^4 = e{{/formula}}|{{formula}}2x^e = x^{2e}{{/formula}}|{{formula}}x^{2x}+x^e+1 = 0{{/formula}}
99 +|{{formula}}e^x = e{{/formula}}|{{formula}}2e^x = e^{2x}{{/formula}}|{{formula}}10^{6x}-2\cdot 10^{3x}+1 = 0{{/formula}}
100 +|{{formula}}3e^x = \frac{1}{2}e^{-x}{{/formula}}|{{formula}}x\cdot 3^x+4\cdot 3^x = 0{{/formula}}|{{formula}}3e^x-1 = \frac{1}{3}e^{-x}{{/formula}}
101 +{{/aufgabe}}
102 +
103 +Nenne eine passende Gleichung. Die Gleichung kann ich nach x auflösen, indem ich {{formula}} \ldots {{/formula}}
104 +(% class="abc" %)
105 +1. {{formula}} \ldots {{/formula}} die Terme auf beiden Seiten durch 5 dividiere und damit die Lösung {{formula}} x = \frac{2}{5} {{/formula}} erhalte.
106 +1. {{formula}} \ldots {{/formula}} von beiden Termen die 5-te Wurzel ziehe und damit die Lösung {{formula}} x = \sqrt[5]{2} {{/formula}} erhalte.
107 +1. {{formula}} \ldots {{/formula}} die Terme auf beiden Seiten zur Basis 5 logarithmiere und damit die Lösung {{formula}} x = \log_5(2) {{/formula}} erhalte.
108 +{{/aufgabe}}
109 +
110 +
73 73  {{aufgabe id="Exponentialgleichungen (Logarithmieren)" afb="I" kompetenzen="K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="15"}}
74 74  Bestimme die Lösungsmenge der Exponentialgleichung:
75 75  (% class="abc" %)
2^x und 8.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.martinrathgeb
Größe
... ... @@ -1,1 +1,0 @@
1 -821.5 KB
Inhalt
x^3 und 8.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.martinrathgeb
Größe
... ... @@ -1,1 +1,0 @@
1 -831.1 KB
Inhalt
2^xund8.ggb
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.dirktebbe
Größe
... ... @@ -1,0 +1,1 @@
1 +60.0 KB
Inhalt
2^xund8.svg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.dirktebbe
Größe
... ... @@ -1,0 +1,1 @@
1 +50.3 KB
Inhalt
x^3und8.ggb
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.dirktebbe
Größe
... ... @@ -1,0 +1,1 @@
1 +61.4 KB
Inhalt
x^3und8.svg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.dirktebbe
Größe
... ... @@ -1,0 +1,1 @@
1 +52.9 KB
Inhalt