Wiki-Quellcode von Lösung Exponentialgleichungen rückwärts lösen
Zuletzt geändert von Martina Wagner am 2025/05/20 14:31
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | |||
2 | 1. ((({{{ }}} | ||
3 | |||
4 | {{formula}} | ||
5 | \begin{align*} | ||
6 | 2 e^x-2 &= 0\\ | ||
7 | 2 e^x &=2\quad \left|:2\\ | ||
8 | e^x &=1 \\ | ||
9 | x &= 0 | ||
10 | \end{align*} | ||
11 | {{/formula}} | ||
12 | ))) | ||
13 | 1. ((({{{ }}} | ||
14 | |||
15 | {{formula}} | ||
16 | \begin{align*} | ||
17 | e^{2x}-e \cdot e^x &= 0 \\ | ||
18 | e^x\cdot(e^x-e) &= 0 \left|\left| \text{ SVNP } | ||
19 | \end{align*} | ||
20 | {{/formula}} | ||
21 | |||
22 | {{formula}}\ e^x \neq 0 ~und~ e^x-e = 0{{/formula}} | ||
23 | {{formula}}\ e^x = e{{/formula}} | ||
24 | {{formula}} x =1 {{/formula}} | ||
25 | ))) | ||
26 | 1. ((({{{ }}} | ||
27 | |||
28 | {{formula}} | ||
29 | \begin{align*} | ||
30 | e^{2x}-4 e^x+4 &= 0 \quad \left|\left|\text{ Subst.: } e^x:=z\\ | ||
31 | z^2-4 z + 4 &= 0 \quad \left|\left|\text{ Mitternachtsformel/abc-Formel } & | ||
32 | \end{align*} | ||
33 | {{/formula}} | ||
34 | |||
35 | {{formula}} | ||
36 | \begin{align*} | ||
37 | \Rightarrow z_{1,2}&=\frac{4\pm\sqrt{4^2-4\cdot 1\cdot 4}}{2\cdot 1}\\ | ||
38 | z_{1,2}&=\frac{4+0}{2}=2 | ||
39 | \end{align*} | ||
40 | {{/formula}} | ||
41 | |||
42 | {{formula}} | ||
43 | \begin{align*} | ||
44 | &\text{Resubst.: } z:= e^x\\ | ||
45 | &e^x=2 \left|\left|\text{ ln } | ||
46 | \Rightarrow x \approx 0,693147...\\ | ||
47 | \end{align*} | ||
48 | {{/formula}} | ||
49 | ))) |