Änderungen von Dokument BPE 7 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/12/12 18:46

Von Version 33.1
bearbeitet von akukin
am 2024/01/28 11:40
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 35.1
bearbeitet von akukin
am 2024/01/28 13:17
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -1,7 +1,7 @@
1 1  {{aufgabe id="Nachweis Dreieck" afb="" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_23.pdf]]" niveau="g" tags="iqb"}}
2 2  In einem kartesischen Koordinatensystem sind die Punkte {{formula}}A(1|2|5){{/formula}}, {{formula}}B(2|7|8){{/formula}} und {{formula}}C(-3|2|4){{/formula}} gegeben.
3 3  1. Weise nach, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Dreiecks sind.
4 -1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}\displaystyle a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat.
4 +1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat.
5 5  {{/aufgabe}}
6 6  
7 7  {{aufgabe id="Eckpunkte einer Pyramide" afb="" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben.pdf]]" niveau="g" tags="iqb"}}
... ... @@ -17,11 +17,6 @@
17 17  1. Bestimme diejenigen Werte von {{formula}}t{{/formula}}, für die der zugehörige Quader das Volumen 15 besitzt.
18 18  {{/aufgabe}}
19 19  
20 -{{aufgabe id="Pyramidenvolumen" afb="" kompetenzen="K2, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/mathematik/grundlegend/2020_M_grundlegend_A_AGLA%28A2%29_1_2.pdf]]" niveau="g" tags="iqb"}}
21 -Betrachtet wird die Pyramide {{formula}}ABCS{{/formula}}. Ihre Grundfläche ist das rechtwinklige Dreieck {{formula}}ABC{{/formula}}; die Hypotenuse {{formula}}\overline{AB}{{/formula}} ist 5 cm lang, die Kathete {{formula}}\overline{AC}{{/formula}} 4 cm. Die Kante {{formula}}\overline{CS}{{/formula}} steht senkrecht zur Grundfläche und hat eine Länge von 7 cm.
22 -1. Berechne das Volumen der Pyramide.
23 -1. Die Pyramide soll in einem Koordinatensystem dargestellt werden, in dem eine Längeneinheit 1 cm entspricht. Gib mögliche Koordinaten der Eckpunkte der Pyramide an.
24 -{{/aufgabe}}
25 25  
26 26  {{aufgabe id="Berechnungen am Quader" afb="" kompetenzen="K1, K2, K4,K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_4.pdf]]" niveau="g" tags="iqb"}}
27 27  [[image:QuaderOrtsvektoren.PNG||width="200" style="float: right"]]Die Abbildung zeigt einen Quader sowie die Ortsvektoren der Eckpunkte {{formula}}A, B{{/formula}} und {{formula}}D{{/formula}}. Die Grundfläche {{formula}}OABC{{/formula}} des Quaders ist quadratisch.