Änderungen von Dokument Lösung Rasenfläche
Zuletzt geändert von Holger Engels am 2024/07/23 08:41
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,8 +1,50 @@ 1 1 1. {{formula}}\overline{AE}{{/formula}} und {{formula}}\overline{CD}{{/formula}} sind parallel, weil deren beiden Richtungsvektoren Vielfache von einander sind (das heißt linear abhängig sind), da {{formula}}\overrightarrow{AE}=\left(\begin{array}{c} 0 \\ 15 \\ 0 \end{array}\right) =3 \cdot \left(\begin{array}{c} 0 \\ 5 \\ 0 \end{array}\right)= 3 \cdot \overrightarrow{CD}{{/formula}} 2 - 3 3 {{formula}}\overline{CD}{{/formula}} und {{formula}}\overline{DE}{{/formula}} schließen einen rechten Winkel ein, da das Skalarprodukt ihrer Richtungsvektoren 0 ergibt: {{formula}}\overrightarrow{CD}\circ \overrightarrow{DE}=\left(\begin{array}{c} 0 \\ 5 \\ 0 \end{array}\right) \circ \left(\begin{array}{c} -12 \\ 0 \\ -1 \end{array}\right)= (-12)\cdot 0 + 5 \cdot 0 + 0 \cdot 0 = 0{{/formula}}. 4 -[[image:Rasenfläche Lösung.JPG||width="400" style="float: right"]] 3 +[[image:Rasenfläche Lösung.JPG||width="350" style="float: right"]] 4 + 5 5 2. Ausgehend vom gegebenen Ansatz kann der Inhalt der Rasenfläche berechnet werden. Im Modell kann die Fläche zerlegt werden in ein Rechteck mit den Seitenlängen {{formula}}|\overline{AE}|{{/formula}} und {{formula}}|\overline{DE}|{{/formula}} (blau) sowie ein rechtwinkliges Dreieck, dessen Katheten die Längen {{formula}}|\overline{AB}|-|\overline{DE}|{{/formula}} und {{formula}}|\overline{AE}|-|\overline{CD}|{{/formula}} (gelb) haben. 6 6 7 7 8 8 9 + 10 + 11 + 12 +3. Die Geradengleichung {{formula}}g{{/formula}} lautet {{formula}}g: \left(\begin{array}{c} 3,6 \\ 8 \\ 0,3 \end{array}\right) + \lambda \cdot \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right) \quad (\lambda \in \mathbb{R}){{/formula}} und die Geradengleichung {{formula}}h{{/formula}} vom Punkt {{formula}}B{{/formula}} nach {{formula}}C{{/formula}} {{formula}}h: \left(\begin{array}{c} 18 \\ 0 \\ 1,5 \end{array}\right) + \mu \cdot \left(\begin{array}{c} -6 \\ 10 \\ -0,5 \end{array}\right) \quad (\mu \in \mathbb{R}){{/formula}}. 13 + 14 +Gleichsetzen der beiden Geradengleichungen {{formula}}\left(\begin{array}{c} 3,6 \\ 8 \\ 0,3 \end{array}\right) + \lambda \cdot \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right) = \left(\begin{array}{c} 18 \\ 0 \\ 1,5 \end{array}\right) + \mu \cdot \left(\begin{array}{c} -6 \\ 10 \\ -0,5 \end{array}\right){{/formula}} liefert folgendes Gleichungssystem: 15 + 16 +{{formula}} 17 +\begin{align} 18 +\text{I} \quad 12 \lambda + 6\mu &= 14,4 \\ 19 +\text{II} \quad 4 \lambda + 10 \mu &= 8 \\ 20 +\text{III} \quad \lambda + 0,5 \mu &=1,2 21 +\end{align} 22 +{{/formula}} 23 + 24 + 25 +{{formula}}5 \cdot \text{I} - 3 \cdot \text{II}{{/formula}} liefert die Gleichung {{formula}}48 \lambda = 48 \Leftrightarrow \lambda = 1{{/formula}} 26 + 27 +Einsetzen von {{formula}}\lambda = 1{{/formula}} in die Geradengleichung {{formula}}g{{/formula}} liefert 28 +{{formula}}\left(\begin{array}{c} 3,6 \\ 8 \\ 0,3 \end{array}\right) + 1 \cdot \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right) =\left(\begin{array}{c} 15,6 \\ 4 \\ 1,3 \end{array}\right){{/formula}} 29 +Somit ergibt sich der Punkt {{formula}}Q = (15,6|4|1,3){{/formula}} 30 + 31 +4. Der Winkel zwischen den Richtungsvektoren der beiden Geraden ergibt sich durch 32 + 33 +{{formula}} 34 +\begin{align} 35 +\cos(\varphi) &= \frac{\left|\left(\begin{array}{c} -6 \\ 10 \\ -0,5 \end{array}\right)\circ \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right)\right|}{\sqrt{(-6)^2+10^2+(-0,5)^2}\cdot \sqrt{12^2+(-4)^2+1^2}}= \frac{|(-6)\cdot 12+ 10 \cdot (-4)+ (-0,5)\cdot 1|}{\sqrt{36+100+0,25}\cdot \sqrt{144+16+1}}= \frac{|-112,5|}{\sqrt{136,25}\cdot \sqrt{161}}\\ 36 +\Leftrightarrow \varphi &= \cos^{-1}\Biggl(\frac{112,5}{\sqrt{136,25}\cdot \sqrt{161}}\Biggl) \approx 41 \text{°} 37 +\end{align} 38 +{{/formula}} 39 + 40 + 41 + 42 +5. 43 +[[image:Skizzerasenfläche.PNG||width="120" style="float: left"]] 44 +Mithilfe der Skizze ergibt sich der Zusammenhang {{formula}}|\overline{QS}|= \frac{0,2}{\sin(\varphi)}= \frac{0,2}{\sin(41\text{°})}{{/formula}} 45 +und damit {{formula}}\overrightarrow{OQ}-\frac{\left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right)}{\sqrt{12^2+(-4)^2+1^2}} \cdot |\overline{QS}|= \left(\begin{array}{c} 15,6 \\ 4 \\ 1,3 \end{array}\right)- \frac{1}{\sqrt{144+16+1}}\cdot \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right) \cdot \frac{0,2}{\sin(41\text{°})} \approx \left(\begin{array}{c} 15,3 \\ 4,1 \\ 1,3 \end{array}\right) {{/formula}} 46 + 47 +Somit ergibt sich für die Koordinaten des Punktes {{formula}}S(15,3|4,1|1,3){{/formula}} 48 + 49 + 50 +
- Skizzerasenfläche.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +216.9 KB - Inhalt