Zuletzt geändert von akukin am 2025/08/14 15:48

Von Version 105.3
bearbeitet von Holger Engels
am 2024/11/17 18:45
Änderungskommentar: Kommentar bearbeiten
Auf Version 117.3
bearbeitet von akukin
am 2025/08/14 15:48
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.akukin
Inhalt
... ... @@ -7,7 +7,7 @@
7 7  [[Kompetenzen.K5]] Ich kann Vektoren zur Bestimmung von Teilpunkten einer Strecke verwenden
8 8  
9 9  {{aufgabe id="Addition und Subtraktion" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6" links="[[Interaktiv>>https://kmap.eu/app/exercise/Mathematik/Rechnen%20mit%20Vektoren/Addition%20und%20Subtraktion/Addition]]"}}
10 -Gegeben sind die Vektoren {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} und {{formula}}\vec{b}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
10 +Gegeben sind die Vektoren {{formula}}\vec{a}= \left(\begin{matrix}1\\3 \end{matrix}\right){{/formula}} und {{formula}}\vec{b}= \left(\begin{matrix}-2\\1 \end{matrix}\right){{/formula}}
11 11  Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch:
12 12  (% class="abc" %)
13 13  1. {{formula}}\vec{a}+\vec{b}{{/formula}}
... ... @@ -19,35 +19,32 @@
19 19  {{aufgabe id="Skalare Multiplikation" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
20 20  Zeichne ein zweidimensionales Koordinatensystem. Ermittle jeweils zeichnerisch:
21 21  (% class="abc" %)
22 -1. {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}}
23 -1. {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
22 +1. {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{matrix}1\\3 \end{matrix}\right){{/formula}}
23 +1. {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{matrix}-2\\1 \end{matrix}\right){{/formula}}
24 24  {{/aufgabe}}
25 25  
26 26  {{aufgabe id="Linearkombination" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="10"}}
27 27  Berechne jeweils den Vektor {{formula}}\vec c{{/formula}}
28 -1. {{formula}}-2\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-4\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}-2\\-2\\20\end{array}\right)=\vec c{{/formula}}
29 -1. {{formula}}\left(\begin{array}{c}1\\2\\3\end{array}\right)-2\left(\begin{array}{c}-2\\2\\0\end{array}\right)+\vec c=\vec o{{/formula}}
28 +1. {{formula}}-2\left(\begin{matrix}1\\0,5\\4\end{matrix}\right)-4\left(\begin{matrix}-1\\0,5\\4\end{matrix}\right)+\frac{1}{2}\left(\begin{matrix}-2\\-2\\20\end{matrix}\right)=\vec c{{/formula}}
29 +1. {{formula}}\left(\begin{matrix}1\\2\\3\end{matrix}\right)-2\left(\begin{matrix}-2\\2\\0\end{matrix}\right)+\vec c=\vec o{{/formula}}
30 30  {{/aufgabe}}
31 31  
32 -{{aufgabe id="Segelregatta" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
32 +{{aufgabe id="Segelregatta" afb="I" kompetenzen="K1,K3,K6" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
33 33  Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
34 34  
35 35  [[image:segelregatta teil1.png||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
36 36  
37 37  (% class="abc" %)
38 -1. (((Drücke die Vektoren {{formula}}\overrightarrow{s_1}{{/formula}} und {{formula}}\overrightarrow{s_2}{{/formula}} durch Linearkombinationen folgender Vektoren aus:
39 -
40 -{{formula}}\vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right){{/formula}}
41 -)))
42 42  1. (((Das Segelteam //Furious// steuert folgenden Kurs um die Bojen. Dabei dient der „Landungspunkt“ jedes Vektors immer als Startpunkt für den neuen Vektor.
43 43  
44 44  {{formula}}\overrightarrow{f_1}= 3 \vec{b}+\frac{5}{3} \vec{c}{{/formula}}, {{formula}}\overrightarrow{f_2}= \vec{a}- 2\vec{b}+\frac{7}{2} \vec{c}{{/formula}}, {{formula}}\overrightarrow{f_3}= \vec{a}- \vec{b} + \frac{3}{4} \vec{d}{{/formula}}, {{formula}}\overrightarrow{f_4}= 2\vec{b}-6,5\vec{c}{{/formula}}
45 45  
46 -mit {{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \quad \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \quad \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \quad \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}}
42 +mit {{formula}}\vec{a}=\left(\begin{matrix} 25 \\ 10 \end{matrix}\right), \quad \vec{b}=\left(\begin{matrix} -10 \\ 10 \end{matrix}\right), \quad \vec{c}=\left(\begin{matrix} 0 \\ 30 \end{matrix}\right), \quad \vec{d}=\left(\begin{matrix} 80 \\ 0 \end{matrix}\right){{/formula}}
47 47  
48 48  Prüfe, ob der Kurs den Regeln der Regatta entspricht. Begründe deine Entscheidung.
49 49  )))
50 -1. (((Das Segelteam //Straight// steuert das Schiff perfekt um die Bojen (wie eingezeichnet). Berechne die Länge des Segelkurses bis zur zweiten Boje. Eine Längeneinheit im Koordinatensystem entspricht 100 Metern in der Wirklichkeit.)))
46 +1. Das Segelteam //Straight// steuert das Schiff perfekt um die Bojen (wie eingezeichnet). Berechne die Länge des Segelkurses bis zur zweiten Boje. Eine Längeneinheit im Koordinatensystem entspricht 100 Metern in der Wirklichkeit.
47 +1. Ein Photograph will Aufnahmen vom Segelteam //Straight// an der zweiten Boje machen und fährt auf direktem Weg vom Start dorthin. Er startet gleichzeitig mit dem Segelteam. Erreicht er die Position //B,,2,,(40|130)// bevor Team //Straight// das Kreuzchen //x// bei Boje 2 erreicht, wenn sein Boot nur ⅔ der Geschwindigkeit des Segelboots fährt?
51 51  {{/aufgabe}}
52 52  
53 53  {{aufgabe id="In Summe Null" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
... ... @@ -56,7 +56,7 @@
56 56  {{/aufgabe}}
57 57  
58 58  {{aufgabe id="Teilung einer Strecke" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
59 -{{formula}}C{{/formula}} teilt die Strecke {{formula}}\over{AB}{{/formula}} im Verhältnis 2:1.
56 +{{formula}}C{{/formula}} teilt die Strecke {{formula}}\overline{AB}{{/formula}} im Verhältnis 2:1.
60 60  1. Stelle {{formula}}\vec{OC}{{/formula}} als Linearkombination der Verbindungsvektoren der Punkte O, A, B dar.
61 61  1. Stelle {{formula}}\vec{OC}{{/formula}} als Linearkombination der Ortsvektoren {{formula}}\vec{OA}{{/formula}} und {{formula}}\vec{OB}{{/formula}} dar.
62 62  
... ... @@ -81,8 +81,8 @@
81 81  {{/aufgabe}}
82 82  
83 83  {{aufgabe id="Vektor" afb="II" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
84 -Der Vektor {{formula}}\vec{a}= \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden.
85 -Zusätzlich soll gelten: {{formula}}\left(\begin{array}{c} 3 \\ 1 \end{array}\right) + \vec{a} = \left(\begin{array}{c} 0,5 \\ d \end{array}\right){{/formula}}.
81 +Der Vektor {{formula}}\vec{a}= \left(\begin{matrix} a_1 \\ a_2 \end{matrix}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden.
82 +Zusätzlich soll gelten: {{formula}}\left(\begin{matrix}3 \\ 1 \end{matrix}\right) + \vec{a} = \left(\begin{matrix} 0,5 \\ d \end{matrix}\right){{/formula}}.
86 86  Bestimme den Wert von d.
87 87  {{/aufgabe}}
88 88  
... ... @@ -100,7 +100,7 @@
100 100  1. Unter allen Punkten auf dem Rand der Deckfläche hat der Punkt {{formula}} S {{/formula}} den kleinsten Abstand von {{formula}} P {{/formula}}, der Punkt {{formula}} T {{/formula}} den größten. Gib die Koordinaten von {{formula}} S {{/formula}} an und bestimme die Koordinaten von {{formula}} T {{/formula}}.
101 101  {{/aufgabe}}
102 102  
103 -{{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" cc="by" niveau="g" tags="iqb" Zeit="10"}}
100 +{{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" cc="by" niveau="g" tags="iqb" zeit="8"}}
104 104  Im abgebildeten Sechseck {{formula}}ABCDEF{{/formula}} sind jeweils zwei Seiten parallel zueinander.
105 105  [[image:Sechseckvektoren.png||width="250" style="float:right"]]
106 106  
... ... @@ -113,7 +113,7 @@
113 113  1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat.
114 114  {{/aufgabe}}
115 115  
116 -{{aufgabe id="Flächeninhalte Verhältnis" afb="II" kompetenzen="K1, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}}
113 +{{aufgabe id="Flächeninhalte Verhältnis" afb="II" kompetenzen="K1, K4, K5" zeit="8" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}}
117 117  Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A,B{{/formula}} und {{formula}}C{{/formula}}. Für den Punkt {{formula}}D{{/formula}} gilt
118 118  {{formula}}\overrightarrow{OD}=\overrightarrow{OC}-2\cdot\overrightarrow{AB}{{/formula}}
119 119  wobei {{formula}}O{{/formula}} den Koordinatenursprung bezeichnet.
... ... @@ -132,4 +132,41 @@
132 132  1. Weise mit Hilfe von Vektoren nach, dass der Schwerpunkt {{formula}}S{{/formula}} die Seitenhalbierenden im Verhältnis 2:1 teilt.
133 133  {{/aufgabe}}
134 134  
132 +{{aufgabe id="Mittelpunkt einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="K1,K5" zeit="7" cc="by-sa" tags="mathebrücke"}}
133 +Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Mittelpunkts zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}.
134 +
135 +Alfons glaubt, dass folgende Formel richtig ist: {{formula}}M\left(\frac{x_1-y_1}{2}\Bigl|\frac{x_2-y_2}{2}\right){{/formula}}
136 +
137 +Klara behauptet aber, dass ihre Formel die richtige ist: {{formula}}M\left(\frac{x_1+x_2}{2}\Bigl|\frac{x_2+y_2}{2}\right){{/formula}}
138 +
139 +(%class=abc")
140 +1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch den Mittelpunkt der Strecke {{formula}}AB{{/formula}}.
141 +1. Gib an, welche Koordinaten des Mittelpunkts Klara berechnet und welche Alfons? Begründe, wessen Formel richtig ist und streiche die falsche Formel durch!
142 +1. Bestimme nun rechnerisch mit der richtigen Formel den Mittelpunkt der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}.
143 +
144 +{{lehrende}}
145 +* Umgang mit Formeln
146 +* Selbstkontrolle durch Vergleich Rechnung - Zeichnung
147 +{{/lehrende}}
148 +
149 +{{/aufgabe}}
150 +
151 +{{aufgabe id="Länge einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="K1, K5" zeit="7" cc="by-sa" tags="mathebrücke"}}
152 +Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Abstands zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}.
153 +
154 +Alfons glaubt, dass folgende Formel richtig ist: {{formula}}d=\sqrt{(x_1+x_2)^2+(y_1+y_2)^2}{{/formula}}
155 +
156 +Klara behauptet aber, dass ihre Formel die richtige ist: {{formula}}d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}{{/formula}}
157 +
158 +(%class=abc")
159 +1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch die Länge der Strecke {{formula}}AB{{/formula}}.
160 +1. Gib an, welche Länge des Mittelpunkts Klara berechnet und welche Alfons? Begründe, wessen Formel richtig ist und streiche die falsche Formel durch!
161 +1. Bestimme nun rechnerisch mit der richtigen Formel die Länge der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}.
162 +
163 +{{lehrende}}
164 +* Umgang mit Formeln
165 +* Selbstkontrolle durch Vergleich Rechnung - Zeichnung
166 +{{/lehrende}}
167 +{{/aufgabe}}
168 +
135 135  {{seitenreflexion bildungsplan="5" kompetenzen="4" anforderungsbereiche="4" kriterien="3" menge="4"/}}