Änderungen von Dokument BPE 7.2 Addition, Skalare Multiplikation, Betrag, Abstand, Strecke
Zuletzt geändert von akukin am 2025/08/14 15:48
Von Version 116.1
bearbeitet von Martina Wagner
am 2025/07/15 06:34
am 2025/07/15 06:34
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 109.2
bearbeitet von Holger Engels
am 2024/11/24 10:06
am 2024/11/24 10:06
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. martinawagner1 +XWiki.holgerengels - Inhalt
-
... ... @@ -7,7 +7,7 @@ 7 7 [[Kompetenzen.K5]] Ich kann Vektoren zur Bestimmung von Teilpunkten einer Strecke verwenden 8 8 9 9 {{aufgabe id="Addition und Subtraktion" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6" links="[[Interaktiv>>https://kmap.eu/app/exercise/Mathematik/Rechnen%20mit%20Vektoren/Addition%20und%20Subtraktion/Addition]]"}} 10 -Gegeben sind die Vektoren {{formula}}\vec{a}= \left(\begin{ matrix}1\\3 \end{matrix}\right){{/formula}} und {{formula}}\vec{b}= \left(\begin{matrix}-2\\1 \end{matrix}\right){{/formula}}10 +Gegeben sind die Vektoren {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} und {{formula}}\vec{b}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}} 11 11 Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch: 12 12 (% class="abc" %) 13 13 1. {{formula}}\vec{a}+\vec{b}{{/formula}} ... ... @@ -19,14 +19,14 @@ 19 19 {{aufgabe id="Skalare Multiplikation" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}} 20 20 Zeichne ein zweidimensionales Koordinatensystem. Ermittle jeweils zeichnerisch: 21 21 (% class="abc" %) 22 -1. {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{ matrix}1\\3 \end{matrix}\right){{/formula}}23 -1. {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{ matrix}-2\\1 \end{matrix}\right){{/formula}}22 +1. {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} 23 +1. {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}} 24 24 {{/aufgabe}} 25 25 26 26 {{aufgabe id="Linearkombination" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="10"}} 27 27 Berechne jeweils den Vektor {{formula}}\vec c{{/formula}} 28 -1. {{formula}}-2\left(\begin{ matrix}1\\0,5\\4\end{matrix}\right)-4\left(\begin{matrix}-1\\0,5\\4\end{matrix}\right)+\frac{1}{2}\left(\begin{matrix}-2\\-2\\20\end{matrix}\right)=\vec c{{/formula}}29 -1. {{formula}}\left(\begin{ matrix}1\\2\\3\end{matrix}\right)-2\left(\begin{matrix}-2\\2\\0\end{matrix}\right)+\vec c=\vec o{{/formula}}28 +1. {{formula}}-2\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-4\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}-2\\-2\\20\end{array}\right)=\vec c{{/formula}} 29 +1. {{formula}}\left(\begin{array}{c}1\\2\\3\end{array}\right)-2\left(\begin{array}{c}-2\\2\\0\end{array}\right)+\vec c=\vec o{{/formula}} 30 30 {{/aufgabe}} 31 31 32 32 {{aufgabe id="Segelregatta" afb="I" kompetenzen="K1,K3,K6" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}} ... ... @@ -39,7 +39,7 @@ 39 39 40 40 {{formula}}\overrightarrow{f_1}= 3 \vec{b}+\frac{5}{3} \vec{c}{{/formula}}, {{formula}}\overrightarrow{f_2}= \vec{a}- 2\vec{b}+\frac{7}{2} \vec{c}{{/formula}}, {{formula}}\overrightarrow{f_3}= \vec{a}- \vec{b} + \frac{3}{4} \vec{d}{{/formula}}, {{formula}}\overrightarrow{f_4}= 2\vec{b}-6,5\vec{c}{{/formula}} 41 41 42 -mit {{formula}}\vec{a}=\left(\begin{ matrix} 25 \\ 10 \end{matrix}\right), \quad \vec{b}=\left(\begin{matrix} -10 \\ 10 \end{matrix}\right), \quad \vec{c}=\left(\begin{matrix} 0 \\ 30 \end{matrix}\right), \quad \vec{d}=\left(\begin{matrix} 80 \\ 0 \end{matrix}\right){{/formula}}42 +mit {{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \quad \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \quad \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \quad \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}} 43 43 44 44 Prüfe, ob der Kurs den Regeln der Regatta entspricht. Begründe deine Entscheidung. 45 45 ))) ... ... @@ -78,8 +78,8 @@ 78 78 {{/aufgabe}} 79 79 80 80 {{aufgabe id="Vektor" afb="II" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}} 81 -Der Vektor {{formula}}\vec{a}= \left(\begin{ matrix} a_1 \\ a_2 \end{matrix}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden.82 -Zusätzlich soll gelten: {{formula}}\left(\begin{ matrix}3 \\ 1 \end{matrix}\right) + \vec{a} = \left(\begin{matrix} 0,5 \\ d \end{matrix}\right){{/formula}}.81 +Der Vektor {{formula}}\vec{a}= \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden. 82 +Zusätzlich soll gelten: {{formula}}\left(\begin{array}{c} 3 \\ 1 \end{array}\right) + \vec{a} = \left(\begin{array}{c} 0,5 \\ d \end{array}\right){{/formula}}. 83 83 Bestimme den Wert von d. 84 84 {{/aufgabe}} 85 85 ... ... @@ -110,7 +110,7 @@ 110 110 1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat. 111 111 {{/aufgabe}} 112 112 113 -{{aufgabe id="Flächeninhalte Verhältnis" afb="II" kompetenzen="K1, K4, K5" zeit="8"quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}}113 +{{aufgabe id="Flächeninhalte Verhältnis" afb="II" kompetenzen="K1, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}} 114 114 Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A,B{{/formula}} und {{formula}}C{{/formula}}. Für den Punkt {{formula}}D{{/formula}} gilt 115 115 {{formula}}\overrightarrow{OD}=\overrightarrow{OC}-2\cdot\overrightarrow{AB}{{/formula}} 116 116 wobei {{formula}}O{{/formula}} den Koordinatenursprung bezeichnet. ... ... @@ -129,41 +129,4 @@ 129 129 1. Weise mit Hilfe von Vektoren nach, dass der Schwerpunkt {{formula}}S{{/formula}} die Seitenhalbierenden im Verhältnis 2:1 teilt. 130 130 {{/aufgabe}} 131 131 132 -{{aufgabe id="Mittelpunkt einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="K1,K5" zeit="7" cc="by-sa" tags="mathebrücke"}} 133 -Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Mittelpunkts zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}. 134 - 135 -Alfons glaubt, dass folgende Formel richtig ist: {{formula}}M\left(\frac{x_1-y_1}{2}\Bigl|\frac{x_2-y_2}{2}\right){{/formula}} 136 - 137 -Klara behauptet aber, dass ihre Formel die richtige ist: {{formula}}M\left(\frac{x_1+x_2}{2}\Bigl|\frac{x_2+y_2}{2}\right){{/formula}} 138 - 139 -(%class=abc") 140 -1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch den Mittelpunkt der Strecke {{formula}}AB{{/formula}}. 141 -1. Gib an, welche Koordinaten des Mittelpunkts Klara berechnet und welche Alfons? Begründe, wessen Formel richtig ist und streiche die falsche Formel durch! 142 -1. Bestimme nun rechnerisch mit der richtigen Formel den Mittelpunkt der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}. 143 - 144 -{{lehrende}} 145 -* Umgang mit Formeln 146 -* Selbstkontrolle durch Vergleich Rechnung - Zeichnung 147 -{{/lehrende}} 148 - 149 -{{/aufgabe}} 150 - 151 -{{aufgabe id="Länge einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="K1, K5" zeit="7" cc="by-sa" tags="mathebrücke"}} 152 -Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Abstands zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}. 153 - 154 -Alfons glaubt, dass folgende Formel richtig ist: {{formula}}d=\sqrt{(x_1+x_2)^2+(y_1+y_2)^2}{{/formula}} 155 - 156 -Klara behauptet aber, dass ihre Formel die richtige ist: {{formula}}d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}{{/formula}} 157 - 158 -(%class=abc") 159 -1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch die Länge der Strecke {{formula}}AB{{/formula}}. 160 -1. Gib an, welche Länge des Mittelpunkts Klara berechnet und welche Alfons? Begründe, wessen Formel richtig ist und streiche die falsche Formel durch! 161 -1. Bestimme nun rechnerisch mit der richtigen Formel die Länge der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}. 162 - 163 -{{lehrende}} 164 -* Umgang mit Formeln 165 -* Selbstkontrolle durch Vergleich Rechnung - Zeichnung 166 -{{/lehrende}} 167 -{{/aufgabe}} 168 - 169 169 {{seitenreflexion bildungsplan="5" kompetenzen="4" anforderungsbereiche="4" kriterien="3" menge="4"/}}