Änderungen von Dokument BPE 7.2 Addition, Skalare Multiplikation, Betrag, Abstand, Strecke
Zuletzt geändert von akukin am 2025/08/14 15:48
Von Version 117.3
bearbeitet von akukin
am 2025/08/14 15:48
am 2025/08/14 15:48
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 114.1
bearbeitet von Holger Engels
am 2025/06/18 06:16
am 2025/06/18 06:16
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. akukin1 +XWiki.holgerengels - Inhalt
-
... ... @@ -44,7 +44,7 @@ 44 44 Prüfe, ob der Kurs den Regeln der Regatta entspricht. Begründe deine Entscheidung. 45 45 ))) 46 46 1. Das Segelteam //Straight// steuert das Schiff perfekt um die Bojen (wie eingezeichnet). Berechne die Länge des Segelkurses bis zur zweiten Boje. Eine Längeneinheit im Koordinatensystem entspricht 100 Metern in der Wirklichkeit. 47 -1. Ein Photograph will Aufnahmen vom Segelteam //Straight// an der zweiten Boje machen und fährt auf direktem Weg vom Start dorthin. Er startet gleichzeitig mit dem Segelteam. Erreicht er die Position // B,,2,,(40|130)// bevor Team //Straight// das Kreuzchen //x// bei Boje 2 erreicht, wenn sein Boot nur ⅔ der Geschwindigkeit des Segelboots fährt?47 +1. Ein Photograph will Aufnahmen vom Segelteam //Straight// an der zweiten Boje machen und fährt auf direktem Weg vom Start dorthin. Er startet gleichzeitig mit dem Segelteam. Erreicht er die Position //(40|130)// bevor Team //Straight// das Kreuzchen //x// bei Boje 2 erreicht, wenn sein Boot nur ⅔ der Geschwindigkeit des Segelboots fährt? 48 48 {{/aufgabe}} 49 49 50 50 {{aufgabe id="In Summe Null" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}} ... ... @@ -53,7 +53,7 @@ 53 53 {{/aufgabe}} 54 54 55 55 {{aufgabe id="Teilung einer Strecke" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}} 56 -{{formula}}C{{/formula}} teilt die Strecke {{formula}}\over line{AB}{{/formula}} im Verhältnis 2:1.56 +{{formula}}C{{/formula}} teilt die Strecke {{formula}}\over{AB}{{/formula}} im Verhältnis 2:1. 57 57 1. Stelle {{formula}}\vec{OC}{{/formula}} als Linearkombination der Verbindungsvektoren der Punkte O, A, B dar. 58 58 1. Stelle {{formula}}\vec{OC}{{/formula}} als Linearkombination der Ortsvektoren {{formula}}\vec{OA}{{/formula}} und {{formula}}\vec{OB}{{/formula}} dar. 59 59 ... ... @@ -97,7 +97,7 @@ 97 97 1. Unter allen Punkten auf dem Rand der Deckfläche hat der Punkt {{formula}} S {{/formula}} den kleinsten Abstand von {{formula}} P {{/formula}}, der Punkt {{formula}} T {{/formula}} den größten. Gib die Koordinaten von {{formula}} S {{/formula}} an und bestimme die Koordinaten von {{formula}} T {{/formula}}. 98 98 {{/aufgabe}} 99 99 100 -{{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" cc="by" niveau="g" tags="iqb" zeit="8"}}100 +{{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" cc="by" niveau="g" tags="iqb" Zeit="10"}} 101 101 Im abgebildeten Sechseck {{formula}}ABCDEF{{/formula}} sind jeweils zwei Seiten parallel zueinander. 102 102 [[image:Sechseckvektoren.png||width="250" style="float:right"]] 103 103 ... ... @@ -110,7 +110,7 @@ 110 110 1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat. 111 111 {{/aufgabe}} 112 112 113 -{{aufgabe id="Flächeninhalte Verhältnis" afb="II" kompetenzen="K1, K4, K5" zeit="8"quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}}113 +{{aufgabe id="Flächeninhalte Verhältnis" afb="II" kompetenzen="K1, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}} 114 114 Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A,B{{/formula}} und {{formula}}C{{/formula}}. Für den Punkt {{formula}}D{{/formula}} gilt 115 115 {{formula}}\overrightarrow{OD}=\overrightarrow{OC}-2\cdot\overrightarrow{AB}{{/formula}} 116 116 wobei {{formula}}O{{/formula}} den Koordinatenursprung bezeichnet. ... ... @@ -129,7 +129,7 @@ 129 129 1. Weise mit Hilfe von Vektoren nach, dass der Schwerpunkt {{formula}}S{{/formula}} die Seitenhalbierenden im Verhältnis 2:1 teilt. 130 130 {{/aufgabe}} 131 131 132 -{{aufgabe id="Mittelpunkt einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen=" K1,K5"zeit="7"cc="by-sa" tags="mathebrücke"}}132 +{{aufgabe id="Mittelpunkt einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}} 133 133 Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Mittelpunkts zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}. 134 134 135 135 Alfons glaubt, dass folgende Formel richtig ist: {{formula}}M\left(\frac{x_1-y_1}{2}\Bigl|\frac{x_2-y_2}{2}\right){{/formula}} ... ... @@ -138,10 +138,12 @@ 138 138 139 139 (%class=abc") 140 140 1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch den Mittelpunkt der Strecke {{formula}}AB{{/formula}}. 141 -1. Gib an, welche Koordinaten des Mittelpunkts Klara berechnet und welche Alfons? Begründe, wessen Formel richtig ist und streiche die falsche Formel durch! 141 +1. Welche Koordinaten des Mittelpunkts berechnet Klara, welche Alfons? Wessen Formel ist richtig? 142 +1. Streiche die falsche Formel durch! 142 142 1. Bestimme nun rechnerisch mit der richtigen Formel den Mittelpunkt der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}. 143 143 144 144 {{lehrende}} 146 +**Sinn dieser Aufgabe:** 145 145 * Umgang mit Formeln 146 146 * Selbstkontrolle durch Vergleich Rechnung - Zeichnung 147 147 {{/lehrende}} ... ... @@ -148,7 +148,7 @@ 148 148 149 149 {{/aufgabe}} 150 150 151 -{{aufgabe id="Länge einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen=" K1, K5"zeit="7"cc="by-sa" tags="mathebrücke"}}153 +{{aufgabe id="Länge einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}} 152 152 Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Abstands zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}. 153 153 154 154 Alfons glaubt, dass folgende Formel richtig ist: {{formula}}d=\sqrt{(x_1+x_2)^2+(y_1+y_2)^2}{{/formula}} ... ... @@ -157,10 +157,12 @@ 157 157 158 158 (%class=abc") 159 159 1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch die Länge der Strecke {{formula}}AB{{/formula}}. 160 -1. Gib an, welche Länge des Mittelpunkts Klara berechnet und welche Alfons? Begründe, wessen Formel richtig ist und streiche die falsche Formel durch! 162 +1. Welche Länge des Mittelpunkts berechnet Klara, welche Alfons? Wessen Formel ist richtig? 163 +1. Streiche die falsche Formel durch! 161 161 1. Bestimme nun rechnerisch mit der richtigen Formel die Länge der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}. 162 162 163 163 {{lehrende}} 167 +**Sinn dieser Aufgabe:** 164 164 * Umgang mit Formeln 165 165 * Selbstkontrolle durch Vergleich Rechnung - Zeichnung 166 166 {{/lehrende}}