Änderungen von Dokument BPE 7.2 Addition, Skalare Multiplikation, Betrag, Abstand, Strecke
Zuletzt geändert von akukin am 2024/12/22 18:42
Von Version 80.1
bearbeitet von akukin
am 2024/02/06 18:27
am 2024/02/06 18:27
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 56.3
bearbeitet von Frauke Beckstette
am 2024/02/06 11:16
am 2024/02/06 11:16
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 0 hinzugefügt, 6 gelöscht)
-
Objekte (0 geändert, 0 hinzugefügt, 1 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. akukin1 +XWiki.beckstette - Inhalt
-
... ... @@ -8,80 +8,6 @@ 8 8 9 9 == Vektoren == 10 10 11 -{{aufgabe id="Vektoraddition zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}} 12 -Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{b}{{/formula}} 13 -a) 14 -{{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}2\\4 \end{array}\right){{/formula}} 15 -b) 16 -{{formula}}\vec{a}= \left(\begin{array}{c}-1\\2 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}3\\-4 \end{array}\right){{/formula}} 17 -{{/aufgabe}} 18 - 19 -{{aufgabe id="Vektoraddition zeichnerisch 2" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="8"}} 20 -Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{b}+\vec{c}{{/formula}} 21 -a) 22 -{{formula}}\vec{a}= \left(\begin{array}{c}2\\3 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}4\\1 \end{array}\right){{/formula}} ; {{formula}}\vec{c}= \left(\begin{array}{c}-1\\2 \end{array}\right){{/formula}} 23 -b) 24 -{{formula}}\vec{a}= \left(\begin{array}{c}-2\\2 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}3\\-4 \end{array}\right){{/formula}} {{formula}}\vec{c}= \left(\begin{array}{c}3\\3\end{array}\right){{/formula}} 25 -{{/aufgabe}} 26 - 27 -{{aufgabe id="Vektoraddition rechnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}} 28 -Berechne 29 -a) 30 -{{formula}}\left(\begin{array}{c}12\\7 \end{array}\right)+\left(\begin{array}{c}2\\4 \end{array}\right)={{/formula}} 31 -b) 32 -{{formula}}\left(\begin{array}{c}-16\\33 \end{array}\right)+\left(\begin{array}{c}0,5\\-33 \end{array}\right)={{/formula}} 33 -c) 34 -{{formula}}\left(\begin{array}{c}-1,5\\\frac{1}{3} \end{array}\right)+\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}} 35 -d) 36 -{{formula}}\left(\begin{array}{c}\frac{1}{2}\sqrt{2}\\5\pi \end{array}\right)-\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}} 37 -e) 38 -{{formula}}\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}} 39 - 40 -f) 41 -{{formula}}\left(\begin{array}{c}1\\7\\9 \end{array}\right)+\left(\begin{array}{c}2\\4\\-1 \end{array}\right)={{/formula}} 42 -g) 43 -{{formula}}\left(\begin{array}{c}100\\71\\92 \end{array}\right)+\left(\begin{array}{c}203\\4\\-119\end{array}\right)={{/formula}} 44 -h) 45 -{{formula}}\left(\begin{array}{c}12,6\\8,1\\0,3\end{array}\right)-\left(\begin{array}{c}-0,6\\0,9\\\frac{1}{3}\end{array}\right)={{/formula}} 46 -i) 47 -{{formula}}\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}} 48 -{{/aufgabe}} 49 - 50 -{{aufgabe id="Multiplikation eines Vektors mit einer Zahl zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}} 51 -a) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} 52 -b) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}} 53 -{{/aufgabe}} 54 - 55 -{{aufgabe id="Gemischte Aufgaben" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}} 56 -a) {{formula}}2\left(\begin{array}{c}1\\3 \end{array}\right)={{/formula}} 57 -b) {{formula}}3\left(\begin{array}{c}-2\\1 \end{array}\right)={{/formula}} 58 -c) {{formula}}6\left(\begin{array}{c}-1\\6 \end{array}\right)={{/formula}} 59 -d) {{formula}}\frac{1}{3}\left(\begin{array}{c}-3\\18 \end{array}\right)={{/formula}} 60 -e) {{formula}}2\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+ 3\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-4\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}} 61 -f){{formula}}-2\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-4\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}} 62 -{{/aufgabe}} 63 - 64 - 65 -{{aufgabe id="Segelregatta Teil 1" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}} 66 -Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}. 67 - 68 -Das Segelteam steuert das Schiff um die Bojen, sie segeln also entlang der folgenden Vektoren: 69 -{{formula}}\overrightarrow{s_1}= \left(\begin{array}{c} -20 \\ 80 \end{array}\right), \overrightarrow{s_2}= \left(\begin{array}{c} -20 \\ 50 \end{array}\right), \overrightarrow{s_3}= \left(\begin{array}{c} 75 \\ 40 \end{array}\right), \overrightarrow{s_4}= \left(\begin{array}{c} 35 \\ -55 \end{array}\right){{/formula}} und {{formula}}\overrightarrow{s_5}= \left(\begin{array}{c} -20 \\ -155 \end{array}\right){{/formula}} 70 - 71 -[[image:segelregatta teil1.png||width="500" style="display:block;margin-left:auto;margin-right:auto"]] 72 - 73 -Drücke die Vektoren {{formula}}\overrightarrow{s_1}, \overrightarrow{s_2}, \overrightarrow{s_3}, \overrightarrow{s_4}{{/formula}} und {{formula}}\overrightarrow{s_5}{{/formula}} durch Linearkombinationen folgender Vektoren aus: 74 -{{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}} 75 -{{/aufgabe}} 76 - 77 -{{aufgabe id="Segelregatta Teil 2" afb="I" kompetenzen="K3, K4, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}} 78 -[[image:segelregatta teil2.jpg||width="600" style="display:block;margin-left:auto;margin-right:auto"]] 79 -{{/aufgabe}} 80 - 81 -{{aufgabe id="Segelregatta Teil 3 (Länge einer Strecke)" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}} 82 -[[image:segelregatta teil3.jpg||width="600" style="display:block;margin-left:auto;margin-right:auto"]] 83 -{{/aufgabe}} 84 - 85 85 {{aufgabe id="Vektor" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}} 86 86 Der Vektor {{formula}}\vec{a}= \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden. 87 87 Zusätzlich soll gelten: {{formula}}\left(\begin{array}{c} 3 \\ 1 \end{array}\right) + \vec{a} = \left(\begin{array}{c} 0,5 \\ d \end{array}\right){{/formula}}. ... ... @@ -121,22 +121,22 @@ 121 121 1. Begründe, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Quadrats sein können, und gib die Koordinaten des vierten Eckpunktes {{formula}}D{{/formula}} dieses Quadrats an. 122 122 {{/aufgabe}} 123 123 124 -{{aufgabe id="Saarpolygon" afb="I" kompetenzen="K1, K3, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_5.pdf]]" niveau="e" tags="iqb" zeit="10"}}50 +{{aufgabe id="Saarpolygon" afb="I" kompetenzen="K1, K3, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_5.pdf]]" niveau="e" tags="iqb"}} 125 125 Die Abbildung 1 zeigt das sogenannte Saarpolygon, ein im Inneren begehbares Denkmal zur Erinnerung an den stillgelegten Kohlebergbau im Saarland. Das Saarpolygon kann in einem Koordinatensystem modellhaft durch den Streckenzug dargestellt werden, der aus den drei Strecken {{formula}}\overline{AB}{{/formula}} , {{formula}}\overline{BC}{{/formula}} und {{formula}}\overline{CD}{{/formula}} mit {{formula}}A(11|11|0){{/formula}}, {{formula}}B(-11|11|28){{/formula}}, {{formula}}C(11|-11|28){{/formula}} und {{formula}}D(-11|-11|0){{/formula}} besteht (vgl. Abbildung 2). {{formula}}A, B, C{{/formula}} und {{formula}}D{{/formula}} sind Eckpunkte eines Quaders. Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Wirklichkeit. 126 126 127 -[[image:Saarpolygon.PNG||width="500" style="display:block;margin-left:auto;margin-right:auto"]]128 - 1.Begründe, dass die Punkte {{formula}}B{{/formula}} und {{formula}}C{{/formula}} symmetrisch bezüglich der {{formula}}x_3{{/formula}}-Achse liegen.129 - 1.Berechne die Länge des Streckenzugs in der Wirklichkeit.53 +[[image:Saarpolygon.PNG||width="500"]] 54 +a) Begründe, dass die Punkte {{formula}}B{{/formula}} und {{formula}}C{{/formula}} symmetrisch bezüglich der {{formula}}x_3{{/formula}}-Achse liegen. 55 +b) Berechne die Länge des Streckenzugs in der Wirklichkeit. 130 130 {{/aufgabe}} 131 131 132 132 133 -{{aufgabe id="Parallelogramm" afb="II" kompetenzen="K1, K2, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit=" 10"}}59 +{{aufgabe id="Parallelogramm" afb="II" kompetenzen="K1, K2, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}} 134 134 Gegeben sind die Punkte {{formula}}A(1|2|3){{/formula}}, {{formula}}B(4|6|4){{/formula}}, {{formula}}C(2|9|6){{/formula}} und {{formula}}D(-1|5|5){{/formula}}. 135 - 1.Zeige, dass das Viereck {{formula}}ABCD{{/formula}} ein Parallelogramm ist.136 - 1.Der Punkt {{formula}}P{{/formula}} liegt auf der Strecke {{formula}}\overline{BD}{{/formula}}. Berechne die Koordinaten des Punktes {{formula}}P{{/formula}} so, dass er die Strecke {{formula}}\overline{BD}{{/formula}} im Verhältnis {{formula}}1:4{{/formula}} teilt.61 + a) Zeige, dass das Viereck {{formula}}ABCD{{/formula}} ein Parallelogramm ist. 62 + b) Der Punkt {{formula}}P{{/formula}} liegt auf der Strecke {{formula}}\overline{BD}{{/formula}}. Berechne die Koordinaten des Punktes {{formula}}P{{/formula}} so, dass er die Strecke {{formula}}\overline{BD}{{/formula}} im Verhältnis {{formula}}1:4{{/formula}} teilt. 137 137 {{/aufgabe}} 138 138 139 -{{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb" zeit="10"}}65 +{{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb"}} 140 140 [[image:gleichschenkligesdreieckabb1.png||width="200" style="float: right"]] 141 141 Für {{formula}}k \in \mathbb{R} {{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k {{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}} D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung) 142 142 ... ... @@ -146,7 +146,7 @@ 146 146 Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}. 147 147 {{/aufgabe}} 148 148 149 -{{aufgabe id="Schwerpunkt im Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="Beckstette, Fujan, Lautenschlager" cc="BY-SA" zeit=" 10"}}75 +{{aufgabe id="Schwerpunkt im Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="Beckstette, Fujan, Lautenschlager" cc="BY-SA" zeit="5"}} 150 150 [[image:Schwerpunkt.png||width="350" style="float: right"]] 151 151 Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A(0|0|0){{/formula}}, {{formula}}B(2|3|4){{/formula}} und {{formula}}C(-1|5|-2){{/formula}}. 152 152 Die Seitenhalbierenden eines Dreiecks schneiden sich im Schwerpunkt {{formula}}S{{/formula}}. ... ... @@ -155,5 +155,3 @@ 155 155 1. Weise mit Hilfe von Vektoren nach, dass der Schwerpunkt {{formula}}S{{/formula}} die Seitenhalbierenden im Verhältnis 2:1 teilt. 156 156 157 157 {{/aufgabe}} 158 - 159 -{{seitenreflexion kompetenzen="4" anforderungsbereiche="4" kriterien="3" menge="4"/}}
- segelregatta teil1.jpg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.katharinalautenschlager - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -162.8 KB - Inhalt
- segelregatta teil1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.katharinalautenschlager - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -323.8 KB - Inhalt
- segelregatta teil2.jpg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.katharinalautenschlager - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -153.8 KB - Inhalt
- segelregatta teil2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.katharinalautenschlager - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -296.8 KB - Inhalt
- segelregatta teil3.jpg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.katharinalautenschlager - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -129.2 KB - Inhalt
- segelregatta teil3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.katharinalautenschlager - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -323.8 KB - Inhalt
- XWiki.XWikiComments[1]
-
- Autor
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.beckstette - Kommentar
-
... ... @@ -1,1 +1,0 @@ 1 -Die Reihenfolge sollte noch entsprechend des Schwierigkeitsgrades geändert werden. - Datum
-
... ... @@ -1,1 +1,0 @@ 1 -2024-02-06 13:58:17.30