Änderungen von Dokument BPE 12.3 Ableitungsregeln für Verknüpfungen und Verkettungen
Zuletzt geändert von Martin Rathgeb am 2025/01/05 15:47
Von Version 35.1
bearbeitet von Martin Rathgeb
am 2025/01/04 23:05
am 2025/01/04 23:05
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 36.1
bearbeitet von Martin Rathgeb
am 2025/01/04 23:19
am 2025/01/04 23:19
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -46,7 +46,11 @@ 46 46 {{/aufgabe}} 47 47 48 48 {{aufgabe id="Spezielle Ableitungen" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}} 49 -Gegeben sind die Winkelfunktionen {{formula}}\sin, \cos{{/formula}} mit Definitionsbereich {{formula}}\mathbb{R}{{/formula}} und zugehörigem Wertebereich {{formula}}[-1;+1]{{/formula}}. Wir wollen ihre ersten Ableitungen {{formula}}\sin', \cos'{{/formula}} ermitteln und gehen dabei folgendermaßen vor. 50 -//Implizites Differenzieren//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=(\sin(x))^2+(\cos(x))^2=1{{/formula}} (trigonometrischer Pythagoras) mit ihrer ersten Ableitung {{formula}}0=h'(x)=2\sin(x)\sin'(x)+2\cos(x)\cos'(x){{/formula}}. 51 -{{formula}}f(x)=\sin(x-(-\pi/2)){{/formula}} 49 +Gegeben sind die Winkelfunktionen {{formula}}\sin, \cos{{/formula}} mit Definitionsbereich {{formula}}\mathbb{R}{{/formula}} und zugehörigem Wertebereich {{formula}}[-1;+1]{{/formula}}. Wir wollen ihre ersten Ableitungen {{formula}}\sin', \cos'{{/formula}} ermitteln und gehen dabei folgendermaßen vor. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=(\sin(x))^2+(\cos(x))^2=1{{/formula}} (trigonometrischer Pythagoras). 50 +(% class="abc" %) 51 +1. //Implizites Differenzieren//. Zeige, dass gilt: {{formula}}\sin(x)\sin'(x)=-\cos(x)\cos'(x){{/formula}}. 52 +1. Begründe bzw. plausibilisiere mittels Teilaufgabe (a) und der Graphen der Winkelfunktionen, dass {{formula}}\sin'=\cos{{/formula}} und {{formula}}\cos'=-\sin{{/formula}}. 53 +1. Zeige, dass aus {{formula}}\sin'=\cos{{/formula}} mittels Kettenregel {{formula}}\cos'=-\sin{{/formula}} folgt. 54 +//Ansatz//. Betrachte folgende hilfreiche Darstellung der Funktionsgleichung {{formula}}\cos(x)=\sin(x-(-\pi/2)){{/formula}} von {{formula}}cos{{/formula}}. 55 +//Anmerkung//. Teilaufgabe (c) plausibilisiert die Behauptung in Teilaufgabe (b). 52 52 {{/aufgabe}}