Version 13.1 von Martin Rathgeb am 2025/01/03 23:13

Verstecke letzte Bearbeiter
Martina Wagner 3.1 1 [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen anwenden
2 [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen kombinieren
Martin Rathgeb 4.1 3
Martin Rathgeb 13.1 4 {{aufgabe id="Produktregel entdecken und begründen" afb="III" kompetenzen="K1,K5,K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}}
Martin Rathgeb 6.1 5 Gegeben sind zwei lineare Funktionen {{formula}}f_i{{/formula}} mit {{formula}}f_i(x)=m_i x+b_i{{/formula}} für {{formula}}i=1,2{{/formula}}.
Martin Rathgeb 4.1 6 (% class="abc" %)
Martin Rathgeb 12.1 7 1. Ermittle rechnerisch (nach Definition der Verknüpfung) die Hauptform der Produktfunktion {{formula}}f=f_1\cdot f_2{{/formula}}.
8 1. Ermittle rechnerisch (nach Definition des Differenzialquotienten) aus der Hauptform von //f// die Hauptform der ersten Ableitung //f'// von //f//.
Martin Rathgeb 7.1 9 1. Zeige, dass sich //f'// folgendermaßen schreiben lässt: {{formula}}f'=f_1'\cdot f_2+f_1\cdot f_2'{{/formula}}.
Martin Rathgeb 11.1 10 1. Recherchiere die Produktregel für Ableitungen (vgl. Merkhilfe, S. 5).
Martin Rathgeb 12.1 11 1. Begründe bzw. plausibilisiere, dass durch die Teilaufgaben (a), (b) und (c) die Produktregel für differenzierbare Funktionen im Wesentlichen gezeigt ist.
Martin Rathgeb 11.1 12 //Anmerkung//. Verwende dafür, dass differenzierbare Funktionen //lokal// "linear approximierbar" sind (vgl. dazu BPE 12.5 und 12.1).
Martin Rathgeb 4.1 13 {{/aufgabe}}
14
Martin Rathgeb 13.1 15 {{aufgabe id="Kettenregel entdecken und begründen" afb="III" kompetenzen="K1,K5,K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}}
16 Gegeben sind zwei lineare Funktionen {{formula}}f_i{{/formula}} mit {{formula}}f_i(x)=m_i x+b_i{{/formula}} für {{formula}}i=1,2{{/formula}}.
17 (% class="abc" %)
18 1. Ermittle rechnerisch (nach Definition der Verknüpfung) die Hauptform der Verkettung {{formula}}f=f_2\circ f_1{{/formula}}.
19 1. Ermittle rechnerisch (nach Definition des Differenzialquotienten) aus der Hauptform von //f// die Hauptform der ersten Ableitung //f'// von //f//.
20 1. Zeige, dass sich //f'// folgendermaßen schreiben lässt: {{formula}}f'=(f_2'\circ f_1) \cdot (f_1'){{/formula}}.
21 1. Recherchiere die Kettenregel für Ableitungen (vgl. Merkhilfe, S. 5).
22 1. Begründe bzw. plausibilisiere, dass durch die Teilaufgaben (a), (b) und (c) die Kettenregel für differenzierbare Funktionen im Wesentlichen gezeigt ist.
23 //Anmerkung//. Verwende dafür, dass differenzierbare Funktionen //lokal// "linear approximierbar" sind (vgl. dazu BPE 12.5 und 12.1).
24 {{/aufgabe}}
25