Änderungen von Dokument BPE 12.5 Tangente in Kurvenpunkt
Zuletzt geändert von Dirk Tebbe am 2025/10/14 08:13
Von Version 32.1
bearbeitet von Martina Wagner
am 2025/10/13 15:37
am 2025/10/13 15:37
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 33.1
bearbeitet von Martina Wagner
am 2025/10/13 15:45
am 2025/10/13 15:45
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -37,7 +37,7 @@ 37 37 1. Weise nach, dass für jeden Wert {{formula}}u\in\mathbb{R}{{/formula}} die Tangente an den Graphen von {{formula}}f{{/formula}} im Punkt {{formula}}\left(u\middle| f\left(u\right)\right){{/formula}} die y-Achse im Punkt {{formula}}\left(0\middle|-f\left(u\right)\right){{/formula}} schneidet. 38 38 {{/aufgabe}} 39 39 40 -{{aufgabe id="Tangente in einem Kurvenpunkt" afb="" kompetenzen="K1, K 2, K4, K5" quelle="Dirk Tebbe, Martin Stern" niveau="" tags="" cc="by"}}40 +{{aufgabe id="Tangente in einem Kurvenpunkt" afb="II" kompetenzen="K1, K5" quelle="Dirk Tebbe, Martin Stern" niveau="" tags="10" cc="by"}} 41 41 Gegeben ist die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=\frac{1}{5} x^3-\frac{16}{5}x{{/formula}}. 42 42 43 43 1. Berechne die Gleichung der Tangente {{formula}}t{{/formula}} an die Kurve {{formula}}K_f{{/formula}} an der Stelle {{formula}}x=3{{/formula}}. ... ... @@ -44,7 +44,7 @@ 44 44 1. Begründe, dass die Gerade {{formula}}g{{/formula}} mit {{formula}}g(x)=\frac{11}{5}x+\frac{54}{5}{{/formula}} auch Tangente an die Kurve {{formula}}K_f{{/formula}} ist. 45 45 {{/aufgabe}} 46 46 47 -{{aufgabe id="Tangente in einem Kurvenpunkt II" afb="II" kompetenzen="K1, K4, K5" quelle="Dirk Tebbe, Martin Stern" niveau="" tags="" cc="by"}} 47 +{{aufgabe id="Tangente in einem Kurvenpunkt II" afb="II" kompetenzen="K1, K4, K5" quelle="Dirk Tebbe, Martin Stern" niveau="15" tags="" cc="by"}} 48 48 Gegeben ist die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=4-\frac{1}{2} e^x{{/formula}}. 49 49 50 50 1. Zeichne {{formula}}K_f{{/formula}} für {{formula}}-3\leq x\leq 3{{/formula}} in ein Koordinatensystem ein.