Änderungen von Dokument BPE 12.5 Tangente in Kurvenpunkt
Zuletzt geändert von akukin am 2024/10/20 20:38
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,9 +1,10 @@ 1 1 [[Kompetenzen.K5]] Ich kann eine Gleichung der Tangente in einem gegebenen Punkt eines Funktionsgraphen bestimmen 2 2 [[Kompetenzen.K5]] Ich kann prüfen, ob eine gegebene Gerade Tangente an einem Funktionsgraphen ist 3 3 4 -{{aufgabe id="Tangente Funktionsschar" afb="" kompetenzen="K1, K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_9.pdf]]" niveau="e" tags="iqb"}}]]" niveau="e" tags="iqb"}} 5 -Gegeben ist für jede positive reelle Zahl {{formula}}a{{/formula}} die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}f_a{{/formula}} mit {{formula}}f_a\left(x\right)=a\cdot x^2{{/formula}}. Die Abbildung zeigt den Graphen von {{formula}}f_\frac{1}{2}{{/formula}} sowie die Tangente {{formula}}t{{/formula}} an den Graphen von {{formula}}f_\frac{1}{2}{{/formula}} im Punkt {{formula}}\left(4\middle| f_\frac{1}{2}\left(4\right)\right){{/formula}}. 4 +{{aufgabe id="Tangente Funktionsschar" afb="I" kompetenzen="K1, K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_9.pdf]]" niveau="e" tags="iqb"}} 6 6 6 +Gegeben ist für jede positive reelle Zahl {{formula}}a{{/formula}} die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}f_a{{/formula}} mit {{formula}}f_a\left(x\right)=a\cdot x^2{{/formula}}. Die Abbildung zeigt den Graphen von {{formula}}f_\frac{1}{2}{{/formula}} sowie die Tangente {{formula}}t{{/formula}} an den Graphen von {{formula}}f_\frac{1}{2}{{/formula}} im Punkt {{formula}}\left(4\middle| f_\frac{1}{2}\left(4\right)\right){{/formula}}. 7 +[[image:Tangentefunktionsschar.png||width="180" style="float: right"]] 7 7 1. Gib anhand der Abbildung eine Gleichung der Tangente {{formula}}t{{/formula}} an. 8 8 1. Weise nach, dass für jeden Wert {{formula}}u\in\mathbb{R}{{/formula}} die Tangente an den Graphen von {{formula}}f_a{{/formula}} im Punkt {{formula}}\left(u\middle| f_a\left(u\right)\right){{/formula}} die //y//-Achse im Punkt {{formula}}\left(0\middle|-f_a\left(u\right)\right){{/formula}} schneidet. 9 9 {{/aufgabe}}