Änderungen von Dokument BPE 12.7 Monotonie

Zuletzt geändert von Holger Engels am 2025/12/22 17:55

Von Version 9.1
bearbeitet von Katharina Justice
am 2025/10/13 15:09
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 57.1
bearbeitet von Holger Engels
am 2025/12/22 17:54
Änderungskommentar: Neues Bild Ableitungsgraph.svg hochladen

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.kaju
1 +XWiki.holgerengels
Inhalt
... ... @@ -3,15 +3,33 @@
3 3  [[Kompetenzen.K5]] [[Kompetenzen.K4]] Ich kann Funktionen auf strenge Monotonie untersuchen
4 4  [[Kompetenzen.K4]] Ich kann die Wertemenge einer Funktion anhand von Graphen, Funktionstermen und Wertetabellen bestimmen
5 5  
6 -{{aufgabe id="Monotonie mit Hilfe des Schaubilds der Ableitung ermitteln" afb="I" kompetenzen="K1, K4" quelle="Ingrid Kolupa, Katharina Justice" zeit="5" cc="by-sa" tags=""}}
7 -Gegeben ist der Graph von {{formula}}f'(x){{/formula}}.
8 -
9 -1. In welchen Bereichen ist {{formula}}f(x){{/formula}} monoton steigend?
10 -1.
11 -1. Listenpunkt
6 +{{aufgabe id="Monotoniebereiche bestimmen" afb="II" kompetenzen="K1, K4" quelle="Simone Kanzler" zeit="10" cc="by-sa" tags=""}}
7 +Gib die Monotoniebereiche der Funktionen {{formula}}f(x){{/formula}} an:
8 +(%class=abc%)
9 +1. {{formula}}f(x)=\frac{1}{8}(\frac{1}{3}x^3+\frac{5}{2}x^2-50x+32){{/formula}}
10 +1. {{formula}}g(x)=e^{(2x+1)}(x-1){{/formula}}
11 +1. {{formula}}h(x)=ae^{(-x-5)}x^2{{/formula}}
12 +{{/aufgabe}}
12 12  
14 +{{aufgabe id="Skizzieren mithilfe der Monotonie" afb="II" kompetenzen="K1, K4" quelle="Simone Kanzler" zeit="9" cc="by-sa" tags=""}}
15 +Gegeben sind folgende Aussagen über die Funktion {{formula}}f(x){{/formula}}:
16 +1. Für {{formula}}x \in [-\infty;-3]{{/formula}} gilt: {{formula}}f’(x){{/formula}}>0
17 +1. Für {{formula}}x \in [-3;2]{{/formula}} gilt: {{formula}}f’(x){{/formula}}<0
18 +1. Für {{formula}}x \to \infty{{/formula}} gilt:{{formula}} f(x) \to 0{{/formula}}.
13 13  
20 +(%class=abc%)
21 +1. Gib für jede Aussage das entsprechende Monotonieverhalten an.
22 +1. Skizziere mithilfe der Aussagen ein mögliches Schaubild der Funktion {{formula}}f(x){{/formula}}.
23 +{{/aufgabe}}
14 14  
25 +{{aufgabe id="Aus Schaubild der Ableitung" afb="II" kompetenzen="K1, K4" quelle="Ingrid Kolupa, Katharina Justice" zeit="10" cc="by-sa" tags=""}}
26 +[[image:Ableitungsgraph.svg||class="right" width=350]]Gegeben ist der Graph von {{formula}}f'(x){{/formula}}.
27 +Beurteile die folgenden Aussagen:
28 +(%class=abc%)
29 +1. Für {{formula}}x \in [2;3]{{/formula}} ist der Graph von //f// monoton fallend.
30 +1. Zwischen dem Hochpunkt und dem Tiefpunkt des Graphen von {{formula}}f'{{/formula}} ist der Graph der Funktion //f// monoton fallend.
31 +1. Es gilt: {{formula}}f(-2)<f(0){{/formula}}
32 +1. Für {{formula}}x<-2{{/formula}} gilt: {{formula}}f''(x) > 0{{/formula}}
15 15  {{/aufgabe}}
16 16  
17 17  {{aufgabe id="Monotonie" afb="II" kompetenzen="K2, K1, K5" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA" zeit="25"}}
Ableitungsgraph.ggb
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.holgerengels
Größe
... ... @@ -1,0 +1,1 @@
1 +45.5 KB
Inhalt
Ableitungsgraph.svg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.holgerengels
Größe
... ... @@ -1,0 +1,1 @@
1 +10.8 KB
Inhalt
... ... @@ -1,0 +1,1 @@
1 +<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="317" height="264"><defs><clipPath id="bHzVTTTiTtro"><path fill="none" stroke="none" d=" M 0 0 L 317 0 L 317 264 L 0 264 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#bHzVTTTiTtro)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="318" height="264" fill-opacity="1"/><path fill="none" stroke="rgb(180,179,186)" paint-order="fill stroke markers" d=" M 23.5 0.5 L 23.5 264.5 M 23.5 0.5 L 23.5 264.5 M 73.5 0.5 L 73.5 264.5 M 173.5 0.5 L 173.5 264.5 M 223.5 0.5 L 223.5 264.5 M 273.5 0.5 L 273.5 264.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(180,179,186)" paint-order="fill stroke markers" d=" M 3.5 0.5 L 3.5 264.5 M 13.5 0.5 L 13.5 264.5 M 33.5 0.5 L 33.5 264.5 M 43.5 0.5 L 43.5 264.5 M 53.5 0.5 L 53.5 264.5 M 63.5 0.5 L 63.5 264.5 M 83.5 0.5 L 83.5 264.5 M 93.5 0.5 L 93.5 264.5 M 103.5 0.5 L 103.5 264.5 M 113.5 0.5 L 113.5 264.5 M 133.5 0.5 L 133.5 264.5 M 143.5 0.5 L 143.5 264.5 M 153.5 0.5 L 153.5 264.5 M 163.5 0.5 L 163.5 264.5 M 183.5 0.5 L 183.5 264.5 M 193.5 0.5 L 193.5 264.5 M 203.5 0.5 L 203.5 264.5 M 213.5 0.5 L 213.5 264.5 M 233.5 0.5 L 233.5 264.5 M 243.5 0.5 L 243.5 264.5 M 253.5 0.5 L 253.5 264.5 M 263.5 0.5 L 263.5 264.5 M 283.5 0.5 L 283.5 264.5 M 293.5 0.5 L 293.5 264.5 M 303.5 0.5 L 303.5 264.5 M 313.5 0.5 L 313.5 264.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(180,179,186)" paint-order="fill stroke markers" d=" M 0.5 49.5 L 317.5 49.5 M 0.5 49.5 L 317.5 49.5 M 0.5 148.5 L 317.5 148.5 M 0.5 198.5 L 317.5 198.5 M 0.5 248.5 L 317.5 248.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(180,179,186)" paint-order="fill stroke markers" d=" M 0.5 9.5 L 317.5 9.5 M 0.5 19.5 L 317.5 19.5 M 0.5 29.5 L 317.5 29.5 M 0.5 39.5 L 317.5 39.5 M 0.5 59.5 L 317.5 59.5 M 0.5 69.5 L 317.5 69.5 M 0.5 78.5 L 317.5 78.5 M 0.5 88.5 L 317.5 88.5 M 0.5 108.5 L 317.5 108.5 M 0.5 118.5 L 317.5 118.5 M 0.5 128.5 L 317.5 128.5 M 0.5 138.5 L 317.5 138.5 M 0.5 158.5 L 317.5 158.5 M 0.5 168.5 L 317.5 168.5 M 0.5 178.5 L 317.5 178.5 M 0.5 188.5 L 317.5 188.5 M 0.5 208.5 L 317.5 208.5 M 0.5 218.5 L 317.5 218.5 M 0.5 228.5 L 317.5 228.5 M 0.5 238.5 L 317.5 238.5 M 0.5 258.5 L 317.5 258.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 123.5 2.5 L 123.5 264.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 123.5 1.5 L 119.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 123.5 1.5 L 127.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 0.5 98.5 L 315.5 98.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 316.5 98.5 L 312.5 94.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 316.5 98.5 L 312.5 102.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="18" y="114" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="68" y="114" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="171" y="114" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="221" y="114" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="271" y="114" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">3</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="103" y="253" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–3</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="103" y="203" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="103" y="154" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–1</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="109" y="54" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">1</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="109" y="114" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(0,103,88)" paint-order="fill stroke markers" d=" M 0 204.83538333333448 L 1.23828125 197.8039954241048 L 2.476562499999986 190.9430271257412 L 3.714843749999986 184.250959472856 L 4.953125 177.72627350006206 L 6.19140625 171.367450241972 L 7.429687499999986 165.17297073319855 L 8.667968749999986 159.1413160083542 L 9.90625 153.27096710205169 L 11.14453125 147.5604050489037 L 12.382812499999986 142.00811088352293 L 13.62109375 136.6125656405219 L 14.859375 131.37225035451334 L 16.09765625 126.2856460601099 L 17.335937499999986 121.35123379192433 L 19.8125 111.93290947265696 L 22.289062499999986 103.10512567361266 L 24.765625 94.85573067169251 L 27.242187499999986 87.1725727437979 L 29.718749999999986 80.04350016682999 L 32.1953125 73.45636121769003 L 34.671875 67.39900417327928 L 37.1484375 61.85927731049899 L 39.625 56.825028906250395 L 42.1015625 52.28410723743474 L 44.578125 48.224360580953274 L 47.0546875 44.63363721370725 L 49.53125 41.4997854125979 L 52.0078125 38.81065345452648 L 54.484375 36.554089616394215 L 56.9609375 34.717942175102365 L 59.437499999999986 33.29005940755221 L 61.91406249999999 32.25828959064492 L 64.390625 31.610481001281798 L 66.8671875 31.33448191636407 L 69.34375 31.418140612792953 L 71.8203125 31.849305367469753 L 74.296875 32.61582445729567 L 76.7734375 33.70554615917197 L 79.25 35.1063187499999 L 81.7265625 36.80599050668068 L 84.203125 38.79240970611557 L 86.6796875 41.053424625205835 L 89.15625 43.57688354085267 L 91.6328125 46.35063472995737 L 94.109375 49.36252646942117 L 96.5859375 52.6004070361453 L 99.0625 56.052124707031 L 101.53906249999999 59.70552775897952 L 104.015625 63.54846446889214 L 106.49218749999999 67.56878311367004 L 108.96875 71.75433197021454 L 111.44531249999999 76.09295931542681 L 113.921875 80.57251342620818 L 116.39843749999999 85.18084257945979 L 118.87499999999999 89.90579505208296 L 121.3515625 94.73521912097894 L 123.82812499999999 99.65696306304892 L 126.3046875 104.65887515519422 L 128.78124999999997 109.728803674316 L 131.2578125 114.8545968973156 L 133.734375 120.02410310109416 L 136.2109375 125.22517056255302 L 138.6875 130.44564755859335 L 141.1640625 135.67338236611647 L 143.640625 140.8962232620235 L 146.1171875 146.10201852321586 L 148.59375 151.27861642659465 L 151.0703125 156.41386524906122 L 153.546875 161.4956132675167 L 156.0234375 166.51170875886243 L 158.5 171.44999999999962 L 160.97656249999997 176.2983352678295 L 163.453125 181.0445628392534 L 165.9296875 185.6765309911724 L 168.40625 190.1820880004879 L 170.8828125 194.54908214410108 L 173.359375 198.76536169891324 L 175.8359375 202.81877494182552 L 178.3125 206.69717014973926 L 180.7890625 210.38839559955568 L 183.265625 213.88029956817599 L 185.7421875 217.16073033250146 L 188.21875 220.21753616943334 L 190.6953125 223.03856535587283 L 193.171875 225.61166616872129 L 195.6484375 227.92468688487986 L 198.125 229.96547578124984 L 200.60156249999997 231.72188113473237 L 203.078125 233.18175122222885 L 205.5546875 234.3329343206404 L 208.03125 235.16327870686837 L 210.50781249999997 235.66063265781395 L 212.984375 235.81284445037835 L 215.4609375 235.60776236146285 L 217.9375 235.0332346679687 L 220.41406249999997 234.07710964679717 L 222.890625 232.7272355748495 L 225.3671875 230.97146072902683 L 227.84375 228.79763338623053 L 230.32031249999997 226.19360182336183 L 232.796875 223.1472143173219 L 235.2734375 219.64631914501203 L 237.74999999999997 215.67876458333353 L 240.2265625 211.23239890918757 L 242.703125 206.29507039947532 L 245.1796875 200.8546273310982 L 247.65624999999997 194.89891798095738 L 250.1328125 188.41579062595406 L 252.609375 181.39309354298945 L 255.0859375 173.81867500896487 L 257.5625 165.68038330078173 L 260.0390625 156.96606669534097 L 262.515625 147.66357346954393 L 264.9921875 137.76075190029192 L 266.23046875 132.58042057340202 L 267.46875 127.24545026448632 L 268.70703125 121.75432200815732 L 269.9453125 116.10551683902804 L 271.18359375 110.29751579171095 L 272.421875 104.3287999008185 L 273.66015625 98.19785020096374 L 274.8984375 91.90314772675892 L 276.13671875 85.44317351281713 L 277.375 78.8164085937508 L 278.61328125 72.02133400417236 L 279.8515625 65.05643077869493 L 281.08984375 57.92017995193094 L 282.328125 50.61106255849277 L 283.56640625 43.127559632993616 L 284.8046875 35.46815221004586 L 286.04296875 27.63132132426186 L 287.28125 19.615548010254884 L 288.51953125 11.41931330263695 L 289.7578125 3.041098236021327 L 290.99609375 -5.520616154979592" stroke-opacity="0.8" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="3.5"/><text fill="rgb(0,103,88)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="24" y="161" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">f'</text></g></g></svg>