Änderungen von Dokument BPE 13 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/10/19 13:43

Von Version 14.2
bearbeitet von akukin
am 2024/03/07 17:03
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 15.1
bearbeitet von akukin
am 2024/03/07 17:58
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -57,4 +57,15 @@
57 57  Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markieren Sie diesen Zeitpunkt in der Abbildung 1, begründe dein Markierung und veranschauliche deine Begründung in der Abbildung 1.
58 58  {{/aufgabe}}
59 59  
60 +{{aufgabe id="Stau2" afb="I, II, III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb"}}
61 +Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}h_k{{/formula}} mit {{formula}}h_k\left(x\right)=\left(x-3\right)^k+1{{/formula}} und {{formula}}k\in\mathbb{N}\setminus\left\{0\right\}{{/formula}}.
62 +1. Das Verhalten von {{formula}}h_k{{/formula}} für {{formula}}x\rightarrow-\infty{{/formula}} ist abhängig von {{formula}}k{{/formula}}. Gib die dabei auftretenden Fälle des Verhaltens und für diese Fälle jeweils einen passenden Wert von {{formula}}k{{/formula}} an. Begründe jeweils die Angabe des Werts von {{formula}}k{{/formula}}.
63 +1. Ermittle die Koordinaten derjenigen Punkte, die alle Graphen der Schar gemeinsam haben.
64 +1. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage:
65 +//Es gibt genau einen Wert von {{formula}}k{{/formula}}, für den der Graph von {{formula}}h_k^\prime{{/formula}} Tangente an den Graphen von {{formula}}h_k{{/formula}} ist.//
66 +Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der Abbildung 2 für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der Abbildung 3 für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}.
67 +
68 +Für {{formula}}k\geq4{{/formula}} werden die Punkte {{formula}}P\left(4\middle| h_k\left(4\right)\right),Q\left(4\middle| h_k^\prime\left(4\right)\right),R\left(2\middle| h_k\left(2\right)\right){{/formula}} und {{formula}}S\left(2\middle| h_k^\prime\left(2\right)\right){{/formula}} betrachtet. Diese Punkte sind jeweils Eckpunkte eines Vierecks. Begründe, dass jedes dieser Vierecke ein Trapez ist, und zeige, dass die folgende Aussage richtig ist:
69 +Für jeden geraden Wert von von {{formula}}k{{/formula}} mit {{formula}}k\geq4{{/formula}} stimmen der Flächeninhalt des Trapezes für {{formula}}k{{/formula}} und der Flächeninhalt des Trapezes für {{formula}}k+1{{/formula}} überein.
70 +{{/aufgabe}}
60 60  {{seitenreflexion/}}