Änderungen von Dokument BPE 13 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/10/19 13:43

Von Version 33.3
bearbeitet von akukin
am 2024/03/26 22:30
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 33.4
bearbeitet von akukin
am 2024/03/26 22:32
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -39,6 +39,7 @@
39 39  {{aufgabe id="Stau MMS" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb"}}
40 40  1. Auf einer Autobahn entsteht morgens an einer Baustelle häufig ein Stau.
41 41  An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=x\cdot\left(8-5x\right)\cdot\left(1-\frac{x}{4}\right)^2{{/formula}} beschrieben werden. Dabei gibt {{formula}}x{{/formula}} die nach 06:00 Uhr vergangene Zeit in Stunden und {{formula}}f\left(x\right){{/formula}} die momentane Änderungsrate der Staulänge in Kilometer pro Stunde an.
42 +
42 42  (% style="list-style: lower-alpha" %)
43 43  1. Nenne die Zeitpunkte, zu denen die momentane Änderungsrate der Staulänge den Wert null hat, und begründe anhand der Struktur des Funktionsterms von f, dass es keine weiteren solchen Zeitpunkte gibt.
44 44  1. Es gilt {{formula}}f\left(2\right)<0{{/formula}}. Gib die Bedeutung dieser Tatsache im Sachzusammenhang an.
... ... @@ -59,12 +59,13 @@
59 59  
60 60  (% style="list-style:" start="2" %)
61 61  1. Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}h_k{{/formula}} mit {{formula}}h_k\left(x\right)=\left(x-3\right)^k+1{{/formula}} und {{formula}}k\in\mathbb{N}\setminus\left\{0\right\}{{/formula}}.
63 +
62 62  (% style="list-style: lower-alpha" %)
63 -1*. Das Verhalten von {{formula}}h_k{{/formula}} für {{formula}}x\rightarrow-\infty{{/formula}} ist abhängig von {{formula}}k{{/formula}}. Gib die dabei auftretenden Fälle des Verhaltens und für diese Fälle jeweils einen passenden Wert von {{formula}}k{{/formula}} an. Begründe jeweils die Angabe des Werts von {{formula}}k{{/formula}}.
64 -1*. Ermittle die Koordinaten derjenigen Punkte, die alle Graphen der Schar gemeinsam haben.
65 -1*. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage:
65 +1. Das Verhalten von {{formula}}h_k{{/formula}} für {{formula}}x\rightarrow-\infty{{/formula}} ist abhängig von {{formula}}k{{/formula}}. Gib die dabei auftretenden Fälle des Verhaltens und für diese Fälle jeweils einen passenden Wert von {{formula}}k{{/formula}} an. Begründe jeweils die Angabe des Werts von {{formula}}k{{/formula}}.
66 +1. Ermittle die Koordinaten derjenigen Punkte, die alle Graphen der Schar gemeinsam haben.
67 +1. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage:
66 66  //Es gibt genau einen Wert von {{formula}}k{{/formula}}, für den der Graph von {{formula}}h_k^\prime{{/formula}} Tangente an den Graphen von {{formula}}h_k{{/formula}} ist.//
67 -1*. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der Abbildung 2 für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der Abbildung 3 für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}.
69 +1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der Abbildung 2 für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der Abbildung 3 für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}.
68 68  [[image:Stau2.png||width="320" style="float: left"]]
69 69  
70 70