Änderungen von Dokument BPE 16 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/10/18 20:31
Von Version 15.1
bearbeitet von Holger Engels
am 2024/01/06 15:42
am 2024/01/06 15:42
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.akukin - Inhalt
-
... ... @@ -47,17 +47,16 @@ 47 47 {{/aufgabe}} 48 48 49 49 {{aufgabe id="Gleichschenkliges Dreieck" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb"}} 50 -[[image:Abb.1.PNG||width="150" style="float: right"]]Für {{formula}}k \in \mathbb{R}{{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k{{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}}D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung 1). 51 -1. Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist. 52 -1. (((Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}. Begründe, dass 53 - 54 -{{formula}}|\overline{MD_k}|= \Bigg|\left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right) \Bigg|{{/formula}} 55 - 56 -die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist. Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}. 57 -))) 58 - 50 +[[image:Abb.1.PNG||width="150" style="float: right"]] 51 +Für {{formula}}k \in \mathbb{R}{{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k{{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}}D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung 1). 52 +**a)** Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist. 53 + 54 + 55 + 56 + 57 + 58 +**b)** Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}. Begründe, dass {{formula}}|\overline{MD_k}|= \Bigg|\left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right) \Bigg|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist. Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}. 59 + 59 59 Für jeden Wert von k liegt die Seitenfläche {{formula}}BCD_k{{/formula}} in der Ebene {{formula}}L_k{{/formula}}. 60 - 61 -(% start="3" %) 62 -1. Bestimme eine Gleichung von {{formula}}L_k{{/formula}} in Koordinatenform. //(zur Kontrolle: {{formula}}x_1+x_2+\frac{4}{k}\cdot x_3 =4{{/formula}})// 61 +**c)** Bestimme eine Gleichung von {{formula}}L_k{{/formula}} in Koordinatenform. //(zur Kontrolle: {{formula}}x_1+x_2+\frac{4}{k}\cdot x_3 =4{{/formula}})// 63 63 {{/aufgabe}}