Änderungen von Dokument Lösung Doppelpyramide
Zuletzt geändert von akukin am 2024/02/02 12:41
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -6,8 +6,6 @@ 6 6 3. {{formula}}\left(\begin{array}{c} x \\ y \\ z\end{array}\right) =r \cdot \overrightarrow{BC} + s \cdot \overrightarrow{BT}= r \cdot \left(\begin{array}{c} -10 \\ 0 \\ 0 \end{array}\right) + s \cdot \left(\begin{array}{c} -5 \\ -5 \\ -12 \end{array}\right) {{/formula}} liefert {{formula}}x= -10r-5s, y= -5s{{/formula}} und {{formula}}z=-12s{{/formula}}. Damit ergibt sich {{formula}}12y-5z=0{{/formula}}. 7 7 (Alternativ kann man, um von der Parameterform auf die Koordinatenform zu kommen, das Skalarprodukt der beiden Spannvektoren berechnen und einen Punkt der Ebene/Stützpunkt einsetzen.) 8 8 9 - 10 - 11 11 4.Sei {{formula}}M{{/formula}} der Mittelpunkt der Fläche {{formula}}ABCD{{/formula}} und {{formula}}K{{/formula}} der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}}. Aus den Skizzen ergibt sich die Beziehung {{formula}}\tan(\varphi)= \frac{\text{Gegenkathete}}{\text{Ankathete}}= = \frac{\frac{1}{2}\cdot |\overline{ST}|}{\frac{1}{2}\cdot |\overline{AB}|} = \frac{12}{5} \Leftrightarrow \varphi= \tan^{-1}\Bigl(\frac{12}{5}\Bigl) \approx 67,4 \text{°}{{/formula}} 12 12 13 13 [[image:Winkelpyramide.jpg||width="120" style="float:left"]][[image:Skizzewinkel.PNG||width="220" style="float:left"]] ... ... @@ -35,7 +35,7 @@ 35 35 6. {{formula}}k \cdot 0 -5z= 5k-60 \Leftrightarrow z=12-k{{/formula}}, d.h. {{formula}}E_k{{/formula}} schneidet die z-Achse im Punkt {{formula}}(0|0|12-k){{/formula}}. Damit ergibt sich {{formula}}-12 \leq k \leq 0{{/formula}}. 36 36 37 37 7. Da sich {{formula}}F{{/formula}} durch Spiegelungen an der xz-Ebene aus {{formula}}E{{/formula}} ergibt, ist {{formula}}\vec{n}=\left(\begin{array}{c} 0 \\ -12 \\ -5 \end{array}\right){{/formula}} ein Normalenvektor von {{formula}}F{{/formula}}. 38 -{{formula}}\left(\begin{array}{c} 0 \\ k \\ -5 \end{array}\right) \circ \left(\begin{array}{c} 0 \\ -12 \\ -5 \end{array}\right)=k \cdot (-12)+ (-5)\cdot (-5)= 0 \Leftrightarrow k= \frac{25}{12}{{/formula}} 36 +Um die Werte von {{formula}}k{{/formula}} zu bestimmen, für die {{formula}}E_k{{/formula}} senkrecht zu {{formula}}F{{/formula}} steht, gilt zu überprüfen, für welche {{formula}}k{{/formula}} die Normalenvektoren der beiden Ebenen senkrecht zu einander stehen (d.h., für welche {{formula}}k{{/formula}} deren Skalarprodukt 0 ist):{{formula}}\left(\begin{array}{c} 0 \\ k \\ -5 \end{array}\right) \circ \left(\begin{array}{c} 0 \\ -12 \\ -5 \end{array}\right)=k \cdot (-12)+ (-5)\cdot (-5)= 0 \Leftrightarrow k= \frac{25}{12}{{/formula}} 39 39 40 40 8. 41 41 [[image:Skizzedoppelpyramide.PNG||width="200" style="float: left"]]