Änderungen von Dokument Lösung Doppelpyramide
Zuletzt geändert von akukin am 2024/02/02 12:41
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -13,9 +13,9 @@ 13 13 6. {{formula}}k \cdot 0 -5z= 5k-60 \Leftrightarrow z=12-k{{/formula}}, d.h. {{formula}}E_k{{/formula}} schneidet die z-Achse im Punkt {{formula}}(0|0|12-k){{/formula}}. Damit ergibt sich {{formula}}-12 \leq k \leq 0{{/formula}}. 14 14 15 15 7. Da sich {{formula}}F{{/formula}} durch Spiegelungen an der xz-Ebene aus {{formula}}E{{/formula}} ergibt, ist {{formula}}\vec{n}=\left(\begin{array}{c} 0 \\ -12 \\ -5 \end{array}\right){{/formula}} ein Normalenvektor von {{formula}}F{{/formula}}. 16 +{{formula}}\left(\begin{array}{c} 0 \\ k \\ -5 \end{array}\right) \circ \left(\begin{array}{c} 0 \\ -12 \\ -5 \end{array}\right)=0 \Leftrightarrow k= \frac{25}{12}{{/formula}} 16 16 17 - 18 18 8. 19 19 [[image:Skizzedoppelpyramide.PNG||width="200" style="float: left"]] Aus der Skizze ergibt sich {{formula}}y_{S'}= 24 \cdot \cos(90\text{°}-\varphi)\approx 22,2{{/formula}} 20 20 21 - {{formula}}\left(\begin{array}{c} 0 \\ k \\ -5 \end{array}\right) \circ \left(\begin{array}{c} 0 \\ -12 \\ -5 \end{array}\right)=0 \Leftrightarrow k= \frac{25}{12}{{/formula}}21 +