Wiki-Quellcode von Lösung Oktaeder

Version 1.1 von akukin am 2024/09/26 12:09

Zeige letzte Bearbeiter
1 1. (((Aus der Abbildung wird ersichtlich, dass die Länge der Strecke {{formula}}\overline{AC}{{/formula}} der gesuchten Kantenlänge entspricht.
2 {{formula}}A\left(1\left|2\right|1\right),C\left(-3\left|-6\right|9\right){{/formula}}
3 {{formula}}\left|\overrightarrow{AC}\right|=\left|\overrightarrow{OC}-\overrightarrow{OA}\right|=\left|\left(\begin{array}{c} -3 \\ -6 \\ 9 \end{array}\right)-\left(\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right)\right|=\left|\left(\begin{array}{c} -4\\ -8 \\ 8 \end{array}\right)\right|=\sqrt{(-4)^2+(-8)^2+8^2}=\sqrt{144}=12{{/formula}}
4
5 Also ist die Kantenlänge des Würfels 12. )))
6 1. (((Wir gehen bis zum Mittelpunkt {{formula}}M{{/formula}} des Quadrats {{formula}}ABCD{{/formula}}, das heißt bis zum Mittelpunkt der Diagonalen {{formula}}\overline{AC}{{/formula}}, und von dort aus in Richtung des Normalenvektors {{formula}}\vec{n}{{/formula}} von {{formula}}H{{/formula}}, da dieser senkrecht auf {{formula}}ABCD{{/formula}} steht.
7
8 Da die Kantenlänge des Würfels 12 ist (siehe Teilaufgabe 1.), müssen wir von {{formula}}M{{/formula}} aus 6 Längeneinheiten in Richtung {{formula}}\vec{n}{{/formula}} gehen.
9 Der Normalenvektor besteht aus den Koeffizienten der Gleichung der Ebene {{formula}}H{{/formula}} in Koordinatenform:
10 {{formula}}H:\ 2x_1+x_2+2x_3=6 \ \Rightarrow\ \vec{n}=\left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right){{/formula}}
11 Der Betrag von {{formula}}\vec{n}{{/formula}} ergibt: {{formula}}\left|\vec{n}\right|=\sqrt{2^2+1^2+2^2}=\sqrt{9}=3{{/formula}}
12 Da die Kantenlänge des Würfels 12 ist und wir nur die Hälfte von {{formula}}M{{/formula}} aus nach oben gehen müssen, benötigen wir also den doppelten Normalenvektor {{formula}}2\vec{n}{{/formula}}, um von {{formula}}M{{/formula}} zum gesuchten Punkt {{formula}}P_1{{/formula}} zu gelangen:
13
14 {{formula}}\overrightarrow{OP_1}=\overrightarrow{OM}+2\cdot\vec{n}=\frac{1}{2}\cdot\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+2\cdot\vec{n}=\frac{1}{2}\cdot
15 \left(\begin{array}{c} 1+(-3) \\ 2+(-6) \\ 1+9 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right)=\frac{1}{2}\cdot
16 \left(\begin{array}{c} -2 \\ -4 \\ 10 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right)=
17 \left(\begin{array}{c} -1 \\ -2 \\ 5 \end{array}\right)+\left(\begin{array}{c} 4 \\ 2 \\ 4 \end{array}\right)= \left(\begin{array}{c} 3 \\ 0 \\ 9 \end{array}\right)
18 {{/formula}}
19 Einer der beiden gesuchten Punkte lautet also {{formula}}P_1\left(3\left|0\right|9\right){{/formula}}.
20 Den anderen gesuchten Punkt (den unteren Punkt) {{formula}}P_2{{/formula}} erhält man, wenn man den doppelten Normalenvektor subtrahiert statt addiert:
21
22 Der zweite Punkt lautet also {{formula}}P_2\left(-5\left|-4\right|1\right){{/formula}}.
23
24 __Hinweis__: Es ist jedoch nur nach einem der beiden Punkte gefragt.
25
26 )))