Wiki-Quellcode von Lösung Oktaeder
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | 1. (((Aus der Abbildung wird ersichtlich, dass die Länge der Strecke {{formula}}\overline{AC}{{/formula}} der gesuchten Kantenlänge entspricht. | ||
2 | {{formula}}A\left(1\left|2\right|1\right),C\left(-3\left|-6\right|9\right){{/formula}} | ||
3 | {{formula}}\left|\overrightarrow{AC}\right|=\left|\overrightarrow{OC}-\overrightarrow{OA}\right|=\left|\left(\begin{array}{c} -3 \\ -6 \\ 9 \end{array}\right)-\left(\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right)\right|=\left|\left(\begin{array}{c} -4\\ -8 \\ 8 \end{array}\right)\right|=\sqrt{(-4)^2+(-8)^2+8^2}=\sqrt{144}=12{{/formula}} | ||
4 | |||
5 | Also ist die Kantenlänge des Würfels 12. ))) | ||
6 | 1. (((Wir gehen bis zum Mittelpunkt {{formula}}M{{/formula}} des Quadrats {{formula}}ABCD{{/formula}}, das heißt bis zum Mittelpunkt der Diagonalen {{formula}}\overline{AC}{{/formula}}, und von dort aus in Richtung des Normalenvektors {{formula}}\vec{n}{{/formula}} von {{formula}}H{{/formula}}, da dieser senkrecht auf {{formula}}ABCD{{/formula}} steht. | ||
7 | |||
8 | Da die Kantenlänge des Würfels 12 ist (siehe Teilaufgabe 1.), müssen wir von {{formula}}M{{/formula}} aus 6 Längeneinheiten in Richtung {{formula}}\vec{n}{{/formula}} gehen. | ||
9 | Der Normalenvektor besteht aus den Koeffizienten der Gleichung der Ebene {{formula}}H{{/formula}} in Koordinatenform: | ||
10 | {{formula}}H:\ 2x_1+x_2+2x_3=6 \ \Rightarrow\ \vec{n}=\left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right){{/formula}} | ||
11 | Der Betrag von {{formula}}\vec{n}{{/formula}} ergibt: {{formula}}\left|\vec{n}\right|=\sqrt{2^2+1^2+2^2}=\sqrt{9}=3{{/formula}} | ||
12 | Da die Kantenlänge des Würfels 12 ist und wir nur die Hälfte von {{formula}}M{{/formula}} aus nach oben gehen müssen, benötigen wir also den doppelten Normalenvektor {{formula}}2\vec{n}{{/formula}}, um von {{formula}}M{{/formula}} zum gesuchten Punkt {{formula}}P_1{{/formula}} zu gelangen: | ||
13 | |||
14 | {{formula}}\overrightarrow{OP_1}=\overrightarrow{OM}+2\cdot\vec{n}=\frac{1}{2}\cdot\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+2\cdot\vec{n}=\frac{1}{2}\cdot | ||
15 | \left(\begin{array}{c} 1+(-3) \\ 2+(-6) \\ 1+9 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right)=\frac{1}{2}\cdot | ||
16 | \left(\begin{array}{c} -2 \\ -4 \\ 10 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right)= | ||
17 | \left(\begin{array}{c} -1 \\ -2 \\ 5 \end{array}\right)+\left(\begin{array}{c} 4 \\ 2 \\ 4 \end{array}\right)= \left(\begin{array}{c} 3 \\ 0 \\ 9 \end{array}\right) | ||
18 | {{/formula}} | ||
19 | Einer der beiden gesuchten Punkte lautet also {{formula}}P_1\left(3\left|0\right|9\right){{/formula}}. | ||
20 | Den anderen gesuchten Punkt (den unteren Punkt) {{formula}}P_2{{/formula}} erhält man, wenn man den doppelten Normalenvektor subtrahiert statt addiert: | ||
21 | |||
22 | Der zweite Punkt lautet also {{formula}}P_2\left(-5\left|-4\right|1\right){{/formula}}. | ||
23 | |||
24 | __Hinweis__: Es ist jedoch nur nach einem der beiden Punkte gefragt. | ||
25 | |||
26 | ))) |